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Abstract
The spin ice materials, including Ho2Ti2O7 and Dy2Ti2O7, are rare-earth pyrochlore magnets
which, at low temperatures, enter a constrained paramagnetic state with an emergent gauge
freedom. Spin ices provide one of very few experimentally realized examples of
fractionalization because their elementary excitations can be regarded as magnetic monopoles
and, over some temperature range, spin ice materials are best described as liquids of these
emergent charges. In the presence of quantum fluctuations, one can obtain, in principle, a
quantum spin liquid descended from the classical spin ice state characterized by emergent
photon-like excitations. Whereas in classical spin ices the excitations are akin to electrostatic
charges with a mutual Coulomb interaction, in the quantum spin liquid these charges interact
through a dynamic and emergent electromagnetic field. In this review, we describe the latest
developments in the study of such a quantum spin ice, focusing on the spin liquid
phenomenology and the kinds of materials where such a phase might be found.

Keywords: spin ice, quantum spin ice, geometrical frustration, spin liquid, artificial photon,
rare-earth magnetism
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1. Introduction

Leaving aside molecular magnets, magnetic chains and lay-
ered magnets, there are many thousands of magnetic mate-
rials known to us. These typically exhibit a low temperature
phase with some long-range ordered magnetic structure which,
no matter how complicated, can be inferred in principle from
the Bragg scattering of neutrons. Their elementary excita-
tions, which are called magnons, are the normal modes of the
coupled magnetic moments. Magnons are bosonic quasiparti-
cles, which are associated with gapless dispersing modes when
the magnetic interactions have a continuous global symmetry.
Suppose one found, in a neutron scattering experiment on a

clean cubic magnet, an absence of Bragg peaks well below the
Curie–Weiss temperature co-existing with linearly dispersing
excitations while heat capacity measurements gave no indica-
tions of a phase transition. A remarkable possibility is that
such a magnet might have no symmetry-broken order at all
and that the magnetic excitations above the ground state be-
have like charged particles interacting with linearly dispersing
radiation. It is the purpose of this review to explain how this
possibility might be realized in pyrochlore magnets.

Such an unusual state of matter is one of many possible
types of quantum spin liquid—so named because quantum
fluctuations are responsible for keeping the spins from
entering a long-range ordered phase characterized by some
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broken symmetry even at zero temperature. Quantum spin
liquids are to be contrasted with ordinary molecular liquids,
which have only short-range order, and superfluid phases,
which are symmetry broken phases. They are also to
be contrasted with conventional paramagnets and also with
collective paramagnets, or so-called classical spin liquids,
which are finite temperature states exhibiting nontrivial short-
range correlations. Quantum spin liquids are quite different:
in common with fractional quantum Hall liquids, they appear
disordered to local probes but they have some form of order
which is instead ‘encoded’ nonlocally and which is often
not characterizable in terms of symmetry. Not only are the
natural characterizing observables in quantum spin liquids
nonlocal but they are often independent of anything but the
topology of the nonlocal observable—such spin liquids are
said to be ‘topologically ordered’. For pragmatists, a common
feature of quantum spin liquids is that they are quantum phases
exhibiting peculiar ‘fractionalized’ excitations meaning that
the microscopic degrees of freedom are, for practical purposes,
split into parts by strong correlations or, more precisely, as a
consequence of having long-range quantum entanglement in
the ground state5.

Until the mid-1980s, condensed matter physicists had
been able to understand a huge variety of different phases
of matter—indeed essentially all known states of matter—in
terms of symmetry and symmetry breaking. The discovery
of the fractional quantum Hall effect in 1986 alerted them
to the importance of radically new concepts underlying the
organization of matter at low energies. Quantum spin liquids
have been the main medium through which theorists have been
able to generalize the physics of the fractional quantum Hall
effect and the physics of low dimensional magnets and there
has been immense progress in the understanding of these states
of matter over the last thirty years. Yet no theoretical tool
exists that will allow people to determine all possible ways in
which matter can organize itself and for really ground-breaking
insights we rely on guidance from experiments. It is for
this reason that the experimental realization of quantum spin
liquids has been eagerly anticipated by the community [2]. One
strategy to uncover these states of matter has been to explore
magnets with magnetic ions sitting on lattices of corner-sharing
triangles or tetrahedra. Antiferromagnetic exchange (AF)
couplings between the ions are highly frustrated on these
lattices such that any transition temperature occurs at a scale
much lower than the mean-field critical temperature scale. In
this way, one might hope that conventional long-range order is
evaded entirely. A deeper reason for exploring geometrically
frustrated magnets is that the semi-classical ground states are
typically subject to a local constraint that can be interpreted as
an emergent gauge invariance. Quantum fluctuations may then

5 The precise definition of a quantum spin liquid is something that has drifted
as people’s understanding of them has grown. In their original incarnation,
quantum spin liquids were magnets where zero point fluctuations about ordered
states are of the order of the total spin moment so that the ground state
is a superposition of states such that each spin has no net moment. Later,
Anderson [1] proposed that liquid phases of paired spin singlets or valence
bonds could form in frustrated magnets and it was this, resonating valence bond
(RVB) idea that set into motion the intense period of research into quantum
spin liquids that continues to the present day.

lead to a quantum spin liquid that is equivalent to a deconfined
phase of a quantum mechanical gauge theory which, as we
explain below, corresponds to a fractionalized phase.

At least the semiclassical part of this strategy is beautifully
realized by a pair of materials which are becoming perhaps
the archetypes of geometrical frustration among real magnetic
materials: the spin ices Dy2Ti2O7 and Ho2Ti2O7 [3–5]. A
great deal of recent theoretical and experimental effort has been
devoted to exploring their rich behaviour at low temperatures,
where they enter a collective paramagnetic phase characterized
by distinctive magnetic correlations that follow from a local
constraint on the magnetic moments on each tetrahedron.

The existence of spin ices is a promising state of affairs for
the general research programme of evincing a quantum spin
liquid in a magnetic material [2]. Whereas many proposed
models with quantum spin liquid ground states are somewhat
unphysical, as we explain below, quantum fluctuations acting
on the set of spin ice states can be reasonably expected to lead to
a quantum spin liquid with gapless photon-like excitations. We
call this quantum spin ice. Furthermore, among the relatives of
spin ice materials, there is a number of materials where spin ice
correlations exist at finite temperature and in which quantum
fluctuations appear significant. The low-temperature phases
of these materials remain to be understood.

This review is intended to bring together in one place
an introduction to the quantum spin ice phase along with
a survey of those materials among the pyrochlore magnets
most likely to harbour such a quantum spin liquid state. We
begin, in section 2.1, by reviewing some aspects of the physics
of the classical spin ice because (i) the magnetism in these
materials is the precursor state to quantum spin ice and (ii)
a familiarity with the microscopic aspects of the pyrochlore
magnets gained thereby will be invaluable in assessing the
prospects for uncovering a quantum spin liquid among them.
In section 3, we review the arguments leading from an XXZ-
like model on the pyrochlore lattice to an effective low-energy
description of the physics as an emergent electromagnetism.
This proceeds in two main steps—by mapping from the
spin model to a quantum dimer model (section 3.1) and by
mapping from the dimer model to a lattice gauge theory
(section 3.2). We then describe the properties of the quantum
spin ice phase (section 3.3) and discuss both the stability
(section 3.4) and naturalness (section 3.5) of this state of
matter. We conclude by describing other contexts in which
a U(1) liquid might be found in condensed matter systems
(section 3.6). The next main part of the review discusses
quantum spin ice from a materials perspective. A discussion
of the relevant microscopic features of candidate materials in
section 4.1 is followed by a description of the specific features
of various candidate quantum spin ices including Tb2Ti2O7

(section 4.2.1), Pr2M2O7 (M = Sn, Zr) (section 4.2.2) and
Yb2Ti2O7 (section 4.2.3).

2. Spin ice

2.1. Classical spin ice

Our discussion of the physics of spin ice begins with the
problem of classical Ising spins Sz

i = ±1/2 that reside on the
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Figure 1. The pyrochlore lattice with Ising magnetic moments on
the lattice sites with a global ẑ axis anisotropy. The magnetic lattice
can be described as a face-centred cubic space lattice with either an
‘up’ or ‘down’ primitive 4-site (tetrahedron) basis. The figure shows
a spin configuration fulfilling ‘2-up’/‘2-down’ ice rules on each
tetrahedron.

sites of a pyrochlore lattice of corner-sharing tetrahedra (see
figure 1) and interact among themselves via an AF nearest-
neighbour exchange coupling J‖ > 0. This model, first
considered by Anderson in a 1956 paper [6], was aimed at
describing the magnetic ordering of spins on the octahedral
sites of normal spinels and the related problem of ionic ordering
in inverse spinels, both systems having a pyrochlore lattice.
The Ising antiferromagnet Hamiltonian, HI,AF, of Anderson’s
model is

HI,AF = J‖
∑
〈i,j〉

Sz
i S

z
j , (1)

with J‖ > 0 and where the sum is carried over the nearest-
neighbour bonds of the pyrochlore lattice. Anderson found that
HI,AF admits an exponentially large number of ground states
given by the simple rule that each ‘up’ and ‘down’ tetrahedron
(figure 1) must have a vanishing net spin. That is, on each
tetrahedron, two spins must be ‘up’ and have Sz = +1/2 and
two spins must be ‘down’ and have Sz = −1/2. Anderson
further recognized that this problem is closely related to that
of hydrogen bonding in the common hexagonal (Ih) phase
of water ice or, more precisely, its cubic (Ic) phase6, both
being characterized by hydrogen (proton) configurations that
obey the two Bernal–Fowler ice rules [7]. The ‘second ice
rule’ is the one relevant to Anderson’s model and to the main
topic of this review7. The second rule states that for each
fourfold coordinated oxygen O2− ion, there must two protons
(H+) near it and covalently bonded to that reference O2− ion,
hence providing a hydrogen bond to two neighbouring O2−

ions (hence H2O molecules). At the same time, there are two

6 Common water ice, Ih, has a hexagonal structure, while the pyrochlore has
cubic symmetry. The Ising pyrochlore problem is equivalent to cubic ice, Ic,
and not Ih. This difference does not modify the second ice-rule analogy or the
connection between the statistical mechanics problem of proton coordination
in water ice and that of the spin arrangement in Anderson’s model or spin ice
below.
7 The ‘first rule’ states that there should be only one proton per O2−–O2−
bond. This rule has no equivalent in Anderson’s model and in spin ice
discussed below [3, 4].

far protons, which are themselves covalently bonded to the
two other oxygen ions and hence hydrogen-bonded ‘back’ to
the original reference O2− ion. In other words, for each O2−

ion, there are two protons near and covalently bonded to it
and two farther protons hydrogen-bonded to it [3–5]. This
rule leads to an underconstrained system in regards to the
number of minimum energy proton configurations in Ih and
Ic which, in return, leads to an exponentially large number
of nearly degenerate proton configurations. Pauling had
estimated in 1935 [8] the number of ice-rule fulfilling ground
states in water ice and the resulting low-temperature residual
entropy S0, finding close agreement with the experimental
value being determined at about the same time by Giauque
et al [9]. Pauling’s reasoning for estimating S0 can be adapted
to Anderson’s model in a number of closely related ways [3–5].
One finds S0 ∼ (NkB/2) ln(3/2), where N is the number of
magnetic sites on the pyrochlore lattice and kB is the Boltzmann
constant. Pauling’s estimate is accurate within a few per cent
of the more precise estimate, both for Ih [10] and the Anderson
model (or, equivalently, Ic) [11].

Anderson’s AF model with Ising spins pointing along the
±ẑ direction (as in figure 1) is unrealistic since there is no
reason for the spins to prefer the ẑ-axis over the x̂- or ŷ-axes in
a system such as the pyrochlore lattice which has global cubic
symmetry. Consequently, that model did not much attract the
attention of theorists and experimentalists investigating real
magnetic materials for a long time. This changed with the 1997
discovery by Harris, Bramwell and co-workers of frustrated
ferromagnetism in the insulating Ho2Ti2O7 pyrochlore oxide
[12, 13].

In Ho2Ti2O7, the magnetic Ho3+ ions reside on a
pyrochlore lattice while Ti4+ is non-magnetic. Despite overall
ferromagnetic (FM) interactions characterized by a positive
Curie–Weiss temperature, θCW ≈ +2 K, Ho2Ti2O7 was found
to not develop conventional long-range magnetic order down
to at least 50 mK [12, 13]. To rationalize this surprising
behaviour, Harris and co-workers put forward the following
argument. Because of the strong local crystal electric field
of trigonal symmetry acting at the magnetic sites, each Ho3+

magnetic moment is forced to point strictly ‘in’ or ‘out’ of
the two tetrahedra joined by that site, a direction that is
along the pertinent cubic [1 1 1] threefold symmetry axis that
passes through the middle of the two site-joined tetrahedra
(see figure 2). This large magnetic anisotropy allows one
to describe the orientation of a Ho3+ magnetic moment by
an effective classical Ising spin S

zi

i , with the ẑi quantization
direction now the local [1 1 1] direction at site i. For a
single tetrahedron with such a [1 1 1] Ising spin at each
of the four corners of a tetrahedron, and interacting with
a nearest-neighbour FM coupling, the minimum energy is
one of six states with two spins pointing ‘in’ and two spins
pointing ‘out’. The ‘up’/‘down’ directions of Anderson’s AF
model in equation (1) now become the ‘in’/‘out’ directions
of the frustrated FM Ising system [14, 15]. This point can
be made clearer by considering the following simple model
of interacting microscopic angular momenta Ji , written as
HFM = −Jex

∑
〈i,j〉 Ji · Jj , where Jex > 0 is FM. With Ji

constrained to point along the local ẑi [1 1 1] Ising direction, we
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Figure 2. The oxygen environment around a magnetic ion in
R2M2O7 materials with rare-earth sites shown in purple. One
distorted cube of oxygen ions is shown with the axial [1 1 1]
oxygens in red and the six transverse oxygens in beige. The six
transverse oxygen ions are equidistant from the central rare-earth
site (∼2.5 Å), lying further from the rare-earth site than the axial
oxygen ions which are at ∼2.2 Å.

have Ji = 2〈J zi 〉Sz
i ẑi with 〈J zi 〉 the magnitude of the angular

momentum Ji of the rare-earth ion. Since ẑi ·ẑj = −1/3 on the
pyrochlore lattice, we recover the model of equation (1) with
J‖ = 4Jex

3 〈J zi 〉2. The ferromagnetically coupled spins forced
to point along local 〈1 1 1〉 directions thus become equivalent
to the frustrated AF Ising model of Anderson in equation (1).

However, unlike the AF model, the FM model with
local [1 1 1] Ising spins is physical since the crystal field
responsible for the effective Ising nature of the magnetic
moments is compatible with the cubic symmetry of the system
(figure 2). On the other hand, as in the AF model, the
number of ground states in this frustrated Ising ferromagnet
model is exponentially large in the system size, resulting
in extensive residual entropy, again given approximately by
the Pauling entropy S0. In accord with this prediction, a
number of magnetic specific heat measurements, and thus
magnetic entropy, have confirmed that Ho2Ti2O7 [16] and
Dy2Ti2O7 [17], along with the Sn-variants, Ho2Sn2O7 [18]
and Dy2Sn2O7 [19], indeed possess a low-temperature residual
entropy consistent with S0

8. Recent developments in high-
pressure materials synthesis have allowed people to make
Ho2Ge2O7 and Dy2Ge2O7, with these also displaying a
residual entropy of S0 [21]. Apart from holmium and
dysprosium pyrochlores, the material Cd2Er2Se4, spinel with
magnetic erbium of pyrochlore sites, also exhibits a residual
entropy S0 [22].

Perhaps at least as interesting as the experimental
determination of an S0 residual entropy in these systems is
the observation, originally made by Harris et al [12], that
the ‘in’/‘out’ Ising spins in the frustrated pyrochlore Ising
ferromagnets can be seen to physically represent, or ‘map
onto’, the hydrogen bonding or, more precisely, the proton

8 Recent efforts to explore the characteristic timescales from ac susceptibility
within the correlated paramagnetic regime of Dy2Ti2O7 have led to
experiments measuring the heat capacity on similar time scales. These show
the residual entropy falling significantly below the Pauling estimate [20].

displacement with respect to the midpoint between two O2−

ions in water ice [3–5]. This observation led Harris, Bramwell
and co-workers to coin the name spin ice for these systems.

While the frustrated nearest-neighbour FM Ising model
helped rationalize the thermodynamic and magnetic properties
of spin ice compounds [12], it was nevertheless initially found
rather puzzling why these materials should be described by
such a simple model or even possess a residual low-temperature
magnetic entropy equal to S0 [23]. While the resolution of
this paradox for classical spin ice may at first hand appear
peripheral to the topic of this review, it will prove of significant
importance and rich in physical insight when we later discuss
the low-energy excitations in quantum spin ice.

In the Ho and Dy based spin ice compounds, the magnetic
moment µ of the Ho3+ and Dy3+ ions is of the order of
µ ∼ 10µB [24]. Considering a nearest-neighbour distance
rnn ∼ 3.6 Å in (Ho, Dy)2(Ti, Sn, Ge)2O7 spin ices, one finds the
scale for the magnetostatic dipolar interactions among nearest
neighbours to be D ∼ 1.4 K [23, 24]. We thus have D ∼ |θCW|
in these systems and dipolar interactions must therefore be
considered carefully at the outset when discussing spin ice
physics in real materials [23]. Crucially, magnetostatic dipole–
dipole interactions display two key features that would seem
to make them antagonistic to the formation of a degenerate
low-temperature state with extensive entropy. Firstly, they
are very long-range, decaying as 1/|rij |3 with the separation
distance |rij | between magnetic moments. Secondly, they
strongly couple the direction of the magnetic moments, µi

and µj , at positions ri and rj , respectively, with the relative
position vector rij ≡ rj − ri . Both properties would
naively appear to dramatically constrain admissible minimum
energy orientations of the moments well beyond the ice rule
imposed by the nearest-neighbour model of equation (1).
Interestingly, one finds that dipolar interactions between local
〈1 1 1〉 Ising moments truncated at the nearest-neighbour
distance are ferromagnetic-like, as in the Harris et al frustrated
Ising model [12, 14, 15]. This dipolar spin ice model (DSIM)
[23], and its subsequent generalization, including additional
short-range Ising exchange interactions [25, 26], has proven
highly successful at explaining quantitatively a wide variety
of behaviour displayed by spin ice compounds. Perhaps
most noteworthy about the DSIM is the observation, first
made through Monte Carlo simulations [23], that the long-
range part of the dipolar interactions beyond the nearest-
neighbour distance appears ‘self-screened’ [27]. That is, they
only lead to a transition to long-range order at a temperature
Tc ∼ 0.07D/kB [28, 29]. This critical temperature is much
lower than the temperature TSI ∼ D/kB at which the system
crosses over from the trivial paramagnetic state to the spin
ice regime, characterized by a fulfilment of the ice rules, and
marked by a broad peak in the magnetic specific heat [17, 23]9.
This behaviour originates from a remarkable feature of the
anisotropic nature of the dipolar interactions on the pyrochlore
lattice [23, 27]. Namely, on this lattice, magnetostatic dipole–
dipole interactions differ very little, and only at short distance,
from a model Hamiltonian with nearest-neighbour interactions

9 This argument omits the nearest-neighbour exchange interaction Jex. For
positive FM Jex the crossover temperature TSI ∼ Jex/3 + 5D/3 [3–5, 23].
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with the same ground state degeneracy as that prescribed by
the ice rules [30]. Of the two frameworks explaining that
phenomenology [30–32], the one that we discuss next is the
most relevant to the topic of this review.

Perhaps the formulation that has been most simply able to
capture in one sweep the key features of the DSIM is the so-
called dumbbell model of Castelnovo, Moessner and Sondhi
[31]. In essence, the dumbbell model is a way of visualizing a
multipole expansion about diamond lattice sites. It takes for a
start the point-like magnetic dipoles of the DSIM and fattens
them up into a rod with two magnetic charges ±qm centred on
the two tetrahedra connected by a [1 1 1] Ising spin. The centres
of the tetrahedra form a diamond lattice with lattice spacing ad.
The magnetic charge qm is chosen so that, given the diamond
centre-to-centre distancead, one recovers the original magnetic
dipole moment with µ ≡ qmad. The original model of point-
like dipoles has now been recast as a model of magnetic
charges interacting though a ‘magnetic Coulomb potential’,
the latter model having, by the construction µ ≡ qmad, the
same 1/r3 dipolar far-field as the DSIM. Since in this model
the magnetic charges, or ‘monopoles’, from the four dumbbells
at the centre of a given tetrahedron overlap, a regularization of
the Coulomb potential is introduced [31]. The strength of the
regularization potential for overlapping monopoles is adjusted
so as to correctly recover the interaction energy for nearest-
neighbour dipoles along with the contribution coming from a
nearest-neighbour exchange [31, 32].

As a result of these constructions, the dumbbell
Hamiltonian Hdb can thus be expressed in terms of the net
charge Qα = ∑

i∈α = 0, ±2qm and ±4qm at the centre of the
αth tetrahedron, with

Hdb = µ0

4π

∑
α>β

QαQβ

rαβ

+
v0

2

∑
α

Q2
α, (2)

where the onsite term v0 is determined from the condition
that this model should reproduce the spin flip energy of the
dipolar spin ice model. From this formulation, it is clear
that in the limit v0 → ∞, the ground states of the system
have Qα = 0 for all α. These are precisely the two-in/two-
out ice-rule obeying states. For finite v0, the low-temperature
state of the system is ultimately determined by the competition
between the self-energy cost of a charge and the energy gain
of a specific arrangement of positive and negative magnetic
charges on the diamond lattice. This dumbbell model describes
rather accurately the DSIM, in particular the long-range 1/r3

nature of its dipolar part. Most importantly, the dumbbell
model has the same quasi-degenerate ice-rule obeying states
as the nearest-neighbour frustrated Ising model of Harris et al
and displays, in particular, a residual low-temperature Pauling
entropy S0.

Noting that the condition of vanishing charge Qα = 0
is equivalent to the ‘2-in’/‘2-out’ spin configuration on each
tetrahedron, we may introduce a coarse-grained ‘spin field’
which we denote as B for a reason that will become clear in
the next section. Then the statement that Qα = 0 is akin to
stating that the ‘spin field’ has zero divergence, ∇ · B = 0.
When there is no local source or sink of the coarse-grained

‘spin field’ in classical spin ice, the magnetic structure factor,
which can be measured experimentally via neutron scattering,
exhibit singularities in reciprocal space at nuclear Bragg points
[33, 34]. The intensity profile around these singularities has
a characteristic ‘bow-tie’ form in planes through the singular
points, which have come to be known as ‘pinch points’ [34, 35].

For a reason that will be expanded upon in section 3, one
refers to the Qα �= 0 charges, sources and sinks of the spin
field B as gauge charges. The beauty of the dipolar spin ice is
that, thanks to the underlying dipolar interactions, the gauge
charge is also a magnetic charge, or ‘monopole’ that is a sink
or source of the local magnetization field, [31], since each spin
comes along with its magnetic moment µ. So one perspective
on the effective low-energy theory of dipolar spin ice is that of a
magnetic Coulomb gas, with charges on a diamond lattice and
in the grand canonical ensemble [36–38]. The flipping of an
individual Ising spin thus corresponds to the nucleation of two
magnetic charges of opposite sign which can then thermally
diffuse while interacting with an effective emergent Coulomb
potential. In short, at low temperature and at low energy, the
long-distance physics of dipolar spin ice is equivalent to a
magnetic formulation of Gauss’ law in which the elementary
excitations interact with a 1/rαβ ‘magnetic’ Coulomb potential
as given by the first term of equation (2). As we shall see
in section 3, the present magnetic charges correspond to the
classical limit of the magnetic charge of the U(1) description
of the quantum spin liquid. In the present case of the classical
dipolar spin ice, these are a remarkable manifestation of the
‘fractionalization’ of the individual elementary dipole moment
(spin) flip excitation and, because of the 1/rαβ nature of
their mutual Coulomb interaction, the work to separate two
charges of opposite sign is finite and the charges are said to be
‘deconfined’ [31, 32].

The paper [31], highlighting the existence of monopole
excitations of energetic origin in the dipolar spin ice materials,
has led to a number of experiments aimed at probing their
effects on various magnetic properties. Because this chapter
in the history of spin ices fits neatly into a discussion of the
experimental probes of exotic excitations, we briefly describe
a cross-section of this work. We direct the reader to recent
reviews for a more extensive discussion [32, 34]. For the
purpose of this review, it suffices to say that, while the
description of the low-energy excitations in dipolar spin ice
model in terms of monopoles is most likely correct, few
experiments can be said to have positively exposed monopoles
in classical spin ice compounds. Some first generation
experiments using muon spin relaxation (muSR) [39] and
relaxation of the bulk magnetization [40] have later been
subject to a controversy in the former case [41–43] and the
interpretation critiqued in the latter [44]. The temperature
dependence of the relaxation time extracted from magnetic
ac susceptibility has been partially rationalized in terms of
diffusive motion of monopoles [36, 37], but such a description
becomes less compelling deep in the spin ice regime [44], either
because of complexities arising from sample quality and/or
disorder issues [44] or yet other aspects of the real materials
that have not been incorporated into the magnetic Coulomb
gas theoretical framework [36, 37]. From another perspective,
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we note that the assignment of the temperature dependence of
the width of the neutron scattering lineshape near the so-called
‘pinch points’ in the Ho2Ti2O7 material [35] to the thermal
nucleation of monopoles with separations of O(102) Å is not
evident. The reason for that is that the lowest temperature
considered in [35] was barely below TSI ∼ 1.9 K at which
this material enters the spin ice state [45]10. The monopole-
based description of the neutron scattering data of Dy2Ti2O7

in a magnetic field along the [1 0 0] direction is, at this time,
perhaps the one that most compellingly endorses the picture
of fractionalized monopoles in these materials [47]. While not
direct evidence for their existence, the field-driven first order
metamagnetic transition for a field along the [1 1 1] direction
is nicely and simply rationalized in terms of a crystallization
of positive and negative monopoles [31, 48].

In view of the prospect of ultimately identifying quantum
spin ice candidate materials characterized by another gapped
and fractionalized excitation, in addition to the magnetic
monopole, as well as an emerging gauge boson (‘photon’), new
experimental methodologies with unambiguous signatures
for these various excitations need to be developed. Such
techniques could be first benchmarked on classical dipolar
spin ices and perhaps proved successful in achieving an
explicit demonstration of the existence of the aforementioned
‘monopoles’. Having reviewed the topic of classical spin
ices, with a focus on the description of their low-temperature
behaviour in terms of fractionalized monopoles, we now move
onto the heart of this review—the topic of quantum spin ice.

2.2. Naming conventions

The reader who wishes to study the original literature on
classical and quantum spin ice will come across a number of
different naming conventions for the emergent particles and
fields. We give here a quick guide to the main conventions
and, at the same time, fix our own. In the literature one can
find the various naming conventions given in the top portion of
table 1. As stated above, in classical spin ice, the ice constraint
on each tetrahedron can be thought of as a divergence-free
condition on a coarse-grained field. Point-like defects resulting
from the local breaking of the ice constraint are sources of
the coarse-grained field. Since the emergent charges have a
physical magnetic response, we call them magnetic charges
or monopoles in common with the classical spin ice literature
[31, 32].

A second kind of gapped excitation appears in quantum
spin ice, which we call a vison. The nature of this excitation
can be seen most clearly from the compact gauge theory
discussed in section 3.2. In this effective field theory [49],
the spin ice constraint appears as Gauss’ law in an electric
field defined on links of the diamond lattice. The effective
field theory has both electric and magnetic degrees of freedom.
In the convention of Hamiltonian lattice gauge theory, the
vison excitation is a source of magnetic flux and is typically
called a magnetic monopole in that community. At this point,

10 The existence of a pinch point at T � TSI [35], deep in the paramagnetic
regime, is presumably due to the pinch-point singularity arising directly from
the anisotropic 1/r3 dipolar interaction [46].

Table 1. Naming conventions for excitations and fields in quantum
spin ice. Our conventions are highlighted.

Coarse-grained field present also in classical limit
Magnetic field B or H [31, 54–56]
Polarization P [33]
Spin field S [30]
Electric field e [49]

Flipped spin defects/emergent charges on diamond lattice
Magnetic monopole/charge [31, 55, 56] + spin ice literature

since 2008
Electric charge [49] from gauge theory literature
Spinon [51, 52] from quantum spin liquid

literature
Gapped topological defects
Vison [54] and quantum spin liquid

literature
Magnetic monopole [49] from gauge theory literature
Electric charge [56]

confusion might easily arise. We have tried to keep our
notation consistent with that, so far, predominantly employed
by classical spin ice researchers and, for this reason, have
swapped the convention—the vison appears as a source of
electric field while the magnetic monopole keeps its identity as
the emergent charge familiar from classical spin ice [31]. We
avoid calling the vison an electric charge because, while the
magnetic monopole is indeed a source of the physical magnetic
field (or, more correctly the macroscopic field H), the vison
is merely a source of the fictitious electric field in the lattice
gauge theory.

The vison borrows its name from the literature on quantum
spin liquids where, to our knowledge, it first appeared to
describe fluxes in Z2 gauge theory [50]. This literature also
uses the term spinon [51, 52] (or fractionalized spin) for the
charges that coherently hop on the diamond lattice sites and
which decohere into the magnetic monopoles of classical spin
ice at finite temperature [53].

Figure 3 shows how the excitations are organized by
energy scale in quantum spin ice.

3. Quantum spin ice

Quantum spin ice is a type of U(1) quantum spin liquid which
might be observed in certain pyrochlore magnets. A U(1) spin
liquid in three dimensions is a collective paramagnetic phase
of matter with fractionalized excitations at low energy that are
gapless, with linear dispersion ω ∼ |k| and with two transverse
polarizations. In short, these excitations behave like particles
of light. From the standpoint of modern relativistic quantum
field theory, physicists regard gauge invariance, and hence
electromagnetic radiation, as being the inevitable consequence
of having a quantum theory of relativistic massless spin one
particles [57]. In the present condensed matter context, the
reasoning is turned around: the quantum spin liquid has an
emergent low energy gauge redundancy so that localized
magnetic excitations of spin one, which have no preferred
axis because there is no spontaneous symmetry breaking, lose
one polarization and behave instead like particles of light.
In contrast to magnons in long-range magnetically ordered
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Figure 3. Schematic of the spectrum of excitations in quantum spin
ice including the approximate energy scales and different naming
conventions.

phases, which have two polarizations because one direction
is fixed by the broken symmetry, the fact of having two
polarizations of photon excitations, whether fundamental or
emergent, is enforced by gauge invariance. In this section, we
shall see in a little more detail how magnetic interactions may
give rise to a variant of ordinary quantum electrodynamics.
We then describe various properties of these exotic phases
and review some of the ways in which they might be probed
experimentally in real quantum magnets. Next, we consider
the naturalness of quantum spin ice models and discuss, from a
very general perspective, the prospects of seeing quantum spin
liquids of this type in real materials. We conclude with a short
section (section 3.6) mentioning other possible condensed
matter realizations of U(1) liquids as well as putting quantum
spin ice into the broader context of understanding quantum
spin liquid phases.

3.1. From a spin model to loops

We begin by returning to classical spin ice because it is, in
some sense to be made more precise later, the precursor state
to the quantum spin liquid state of quantum spin ice systems.
Also, it will give us a classical example in which a U(1) gauge
redundancy appears, or really emerges, at low energies in a
magnet. The key to making a spin ice is to frustrate an Ising
model by putting it on a pyrochlore lattice (see figure 2). As
discussed earlier in section 2.1, in real magnets, the Ising spins
interact in spin space as though they were pointing along the
local 〈1 1 1〉 directions. The interactions in a classical nearest-
neighbour spin ice (CSI) model are described by the same
Hamiltonian as in equation (1) that we rewrite here:

HCSI = J‖
∑
〈ij〉

Sz
i S

z
j . (3)

To emphasize something we have already mentioned: this
classical Hamiltonian has a hugely degenerate ground state

composed of spin configurations fulfilling the ‘ice rule’ of two
spins pointing in and two pointing out of each tetrahedron as
illustrated in figure 2 and the top panel of figure 6. We denote
the Hilbert space of ice states as I. The spectrum of states
has a gap of 4J‖ to flipped spin defects. The ice rule can
be formulated as

∑
a Sa · ẑa = 0 (where the sum runs over

all the sublattice sites a of a tetrahedron) for each tetrahedral
element of the pyrochlore lattice. This condition is a zero
divergence condition on a lattice [34], which may be coarse-
grained to ∇ ·B = 0 where the ‘magnetic field’ B is a coarse-
grained analogue of the spin field Sa on the lattice. Since any
vector field can be decomposed into the sum of two fields with,
respectively, zero divergence and zero curl, in order to obtain
thermodynamic quantities within the restricted (∇ · B = 0)
manifold of spin ice states, one must average solely over the
circulation of B. In dramatic contrast to conventional long-
range ordered magnets at low energies, in spin ices, this coarse-
grained circulation is unconstrained and runs over a number of
states that scales as exp(αV ) in the volumeV of the system. We
can look at the divergence-free constraint as an emergent gauge
invariance, since one may introduce a vector potential A such
that B = ∇ × A and could carry out gauge transformations
on A that would leave the divergence-free condition invariant.
At finite but low temperatures, the divergence-free condition
is weakly violated by the thermal excitation of spin flip defects
(i.e. the ‘monopoles’ of the classical dipolar spin ice). As
the electrostatic analogy suggests, these defects behave like
sources of B and, at temperatures where such effective charges
are dilute, spin ice should behave much like a dilute plasma
described in the grand canonical ensemble [36–38]. This
physics becomes richer still when the underlying microscopic
magnetic moments, µa ∝ Sa , interact through a long-range
dipolar coupling—hence the review of dipolar spin ices in
section 2.1. In particular, as discussed in section 2.1, the
dipolar interaction about the spin ice background fractionalizes
into an energetic Coulomb interaction between defects in a
background of tetrahedra satisfying the spin ice rule [31].

The gauge invariance of classical spin ice turns out to be
crucial to the quantum case to which we now turn. We now
allow for the presence of (perturbative) ‘transverse’ nearest-
neighbour exchange couplings in addition to the ‘longitudinal’
(Ising) exchange part defined by equation (3). Our only
requirement is that the transverse couplings should have a
characteristic energy scaleJ⊥ � J‖ so that there is little mixing
of the ice rule states with canted spin states away from the
local [1 1 1] Ising direction. We shall discuss in section 4.1 the
most general nearest-neighbour symmetry-allowed anisotropic
Hamiltonian on the pyrochlore lattice that does not commute
with HCSI and thus causes quantum dynamics. For now,
we consider a minimal spin model that contains quantum
dynamics within a spin ice state and which is a sort of local
XXZ model with transverse coupling J⊥.

HQSI ≡ HCSI + H⊥ = HCSI − J⊥
∑
〈ij〉

(S+
i S−

j + S−
i S+

j ). (4)

We shall comment, in section 3.5, on the conditions under
which real materials may exhibit such a J⊥ � J‖ separation
of energy scales.
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Figure 4. Closed hexagonal loop on the pyrochlore lattice. The
figure shows a segment of a [1 1 1] kagome plane in the pyrochlore
lattice showing one closed hexagonal loop (in red) and a flippable
spin configuration around that loop. The diamond lattice sites lie at
the centres of the tetrahedra.

The reason for considering such a separation of scales is
that we require the manifold of classical spin ice states I, which
form a reference classical spin liquid [2], to be the background
on which quantum fluctuations can act perturbatively. This
allows one to carry out perturbation theory in the transverse
couplings—the zeroth order states being the whole manifold
I of degenerate ice states. The lowest order terms derived
from a canonical perturbation theory that preserve the ice rule
constraint are ring exchange terms that live on the hexagonal
loops on the pyrochlore lattice (figure 4). Up to a numerical
prefactor, the effective low-energy Hamiltonian that describes
quantum fluctuations within I is

Hring ∼ J 3
⊥

J 2
‖

∑
h∈{�}

S+
h,1S

−
h,2S

+
h,3S

−
h,4S

+
h,5S

−
h,6 + h.c., (5)

where the sum is taken over the set of all hexagonal plaquettes
in the pyrochlore lattice labelled by {�}. It turns out that
the sign of the ring exchange coupling Jring ∼ J 3

⊥/J 2
‖ is not

important in the limit Jring � J‖ since one can unitarily
transform one sign to the other [49]11. The U(1) liquid
phase of the quantum spin ice model arises from this effective
Hamiltonian. The ring exchange term has a local U(1)

gauge invariance: one can perform a rotation of the spin
coordinate frame about the local [1 1 1] ẑ-axis on a given
tetrahedron

∏
i∈t exp(iθSz

i ), where the product is taken over
sites i on pyrochlore tetrahedron t , which may capture 0 or 2
vertices of a hexagonal ring exchange operator. This rotation
leaves the effective ring exchange Hamiltonian of equation (5)
unchanged. The notation U(1) refers to the fact that the

11 The transformation that changes the sign of the ring exchange changes
also the background flux through the hexagonal plaquettes. This does not
change the low-energy physics. However, in the gauge mean-field theory
(gMFT) [51, 52] described later in this paper, the background π flux affects the
dispersion of spinon excitations which, in turn, can affect the phase diagram.

local transformation that leaves the Hamiltonian invariant is an
element of the U(1) group of 1 × 1 unitary matrices (complex
phases). More generally, to all orders in the perturbation
expansion in J⊥, there is a local gauge invariance of this sort.

Now that we have motivated the existence of dominant ring
exchange terms in certain effective low-energy Hamiltonian
models of pyrochlore magnets, we seek to understand the
resulting low-energy phase. This discussion will take a while
and involve ramified ideas. The problem of understanding the
ring exchange model has been tackled in several different ways
that are summarized in figure 5. In particular, it is helpful to
recognize the ring exchange model as a type of quantum dimer
model on the diamond lattice as illustrated in figure 6. We
refer the reader to [49, 55, 56] and to figure 6 for further details
of the mapping to the dimer model. The main idea is that
the spin ice states correspond to so-called ‘loop coverings’ of
the diamond lattice where dimers on the links of the diamond
lattice are placed end-to-end. In this representation, the spin
ice rule is equivalent to the constraint that every diamond site
has exactly two dimers connected to it. The pyrochlore ring
exchange Hamiltonian of equation (5) can be written in a form
that symbolizes the quantum dynamics of these dimers

(6)

so the V ∼ O(J 3
⊥/J 2

‖ ) effect of the hexagonal ring exchange
is to cause dimers to resonate around hexagonal plaquettes on
the pyrochlore lattice.

It is possible to gain some insight into this model by adding
the number operator for flippable plaquettes, HN, to HDimer.
The HN term, which alone maximizes or minimizes the number
of flippable hexagons depending on the sign of the coupling and
allows one to tune the theory of quantum dimers to an exactly
solvable Rokhsar–Kivelson (RK) point [49, 58], is given by:

(7)

At the RK point V = µ, one may write down the exact
ground state wavefunction and obtain information about the
excitations, for example through a single mode approximation
[49, 54, 58] or by computing certain correlation functions in
this model numerically exactly using classical Monte Carlo.
The underlying insight in the latter procedure is that the
ground state wavefunction of the RK model is an equal weight
superposition of different ‘loop coverings’, which can be
sampled using Monte Carlo at infinite temperature [59, 60].
The result is that the low-energy spectrum is gapless with a k2

dispersion precisely at the RK point [49, 54]. This and other
aspects of the RK point can be captured using an effective field
theory, which also allows one to infer the form of the phase
diagram in figure 7 of the model H = HDimer + HN [49, 54].
On one side of the RK point, µ > V , perturbation theory
tells us that the ground state immediately enters into a long-
range ordered crystalline dimer phase. On the opposite side,
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Figure 5. Showing the conceptual relationships between various models mentioned in the review which have been instrumental in
understanding the U(1) liquid phase in pyrochlore lattice magnets.

Figure 6. Showing how the loop manifold for the dimer model is
constructed from the spin ice states. (a) shows one particular spin
ice configuration on a pair of tetrahedra on the pyrochlore lattice and
(b) shows the corresponding dimer links of the diamond lattice
connecting the centres of the pyrochlore tetrahedra. The spin
configuration in (a) is mapped to the dimer configuration
(blue/yellow rods) in (b) as follows. The diamond lattice is bipartite
so that alternating pyrochlore tetrahedra can be labelled A and B.
Suppose the left tetrahedron is an A tetrahedron. The rule to make a
loop configuration is to lay a dimer along a diamond lattice link
when a moment points into an A tetrahedron (or out of a B
tetrahedron). Evidently, the ice states lead to dimer configurations
where exactly two dimers meet at each diamond lattice site. The set
of such states is acted on by the quantum dimer Hamiltonian
H = HDimer + HN given in the main text. See equations (6) and (7).

Figure 7. Phase diagram of the fully packed loop quantum dimer
model described in the main text. For the diamond lattice model
relevant to pyrochlore quantum spin ice, the transition between the
quantum liquid and the long-range ordered state occurs at
µ/V = −0.5 [55]. The qualitative form of the phase diagram is
shared by quantum dimer models in three dimensions with tuning
parameter µ/V [49, 54, 61].

we expect the number of flippable plaquettes to be maximized
when µ is sufficiently large and negative—producing another
state with long-range order which has been named ‘squiggle
state’ for the intertwined loops of dimers characterizing the
phase [55]. Directly away from the RK point, for µ � V where
the resonating plaquette term HDimer is important, a liquid state
should persist within some window of couplings (µ/V )c <

(µ/V ) < 1. The presence of a linearly dispersing photon-like
low-energy excitation mode within this window can be inferred
from an effective field theory [49, 54]. Specifically, one finds
that, while the dispersion is strictly quadratic at the RK gapless
point, the dispersion becomes linear for µ/V < 1. This can
be rationalized on the basis of an effective non-compact field
theory: a term (∇ × A)2 which vanishes at the RK point is
a relevant perturbation which immediately drives the system
into the U(1) phase away from the RK point [49, 54].

More recently, concrete evidence for the presence of a
U(1) phase has come from numerics. Fortunately, the dimer
Hamiltonian, H = HDimer +HN of equations (6) and (7) has no
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sign problem and can be studied using quantum Monte Carlo
(QMC). In the guise of a hard core boson model on a diamond
lattice with large nearest-neighbour repulsion, the dimer model
also arises at low energies. Such a model has been simulated
using QMC implemented using the stochastic series expansion
(SSE) method [62]. These simulations find a state with no
superfluid order and no Bragg peaks in the structure factor,
and there thus appears to be a liquid phase down to the lowest
temperatures accessed by the simulations. In a recent zero
temperature Monte Carlo study, Shannon et al mapped out the
whole phase diagram of the dimer model [55]. In particular,
the authors of [55] found further evidence for a gapless
mode with linear dispersion persisting across a finite µ/V

window between the exactly solvable RK point µ/V = 1 and
µ/V ≈ −1/2 (figure 7). This includes the crucial ‘physical’
µ = 0 point corresponding to the effective ring exchange
model equation (6) derived via perturbation theory starting
from the original spin Hamiltonian. The conclusion is that
there is good evidence that the spin model with Hamiltonian
equation (5) acting within the ice manifold has a quantum spin
liquid ground state.

3.2. From loops to a gauge theory

One can gain a great deal of physical insight into the quantum
spin ice model by making a set of transformations from the
dimer Hamiltonian equations (6) and (7) to obtain a lattice
gauge theory [49, 63, 64]. These transformations require
two main steps: the first is to enlarge the Hilbert space of
the model by allowing the link dimer occupation numbers
to take any integer value on each link L, not only zero
and one. The associated dimer occupation operator is nL.
The original physical subspace of Sz eigenvalues, Sz

L =
±1/2, is a subset of Sz

L = nL − 1/2 with eigenvalues
of nL running over all integers12. To recover the original
physical subspace (Sz = ±1/2), which corresponds to the
aforementioned hardcore dimer constraint, one introduces a
‘soft’ constraint with tunable coupling through an extra term
in the Hamiltonian of the form

HConstraint = U
∑

L

(
nL − 1

2

)2

. (8)

There is also a requirement for a second constraint which, taken
together with the constraint on the occupation numbers on a
link, imposes the ice-rule condition. This second constraint
takes the form

QI ≡
∑

L∈Diamond sites

nL = 2, (9)

where the sum runs over the four links connected to a given
diamond site I. The dimer constraint introduced in the previous
section is that exactly two dimers connect to each diamond
site. Now, the ‘soft’ constraint of equation (8) together with
QI = 2 enforce the ice-rule pattern of dimers. The constraint
QI = 2 can be thought of as an analogue of Gauss’ law. To

12 This is not to say that we have increased the effective spin. Instead, the
Hilbert space has been enlarged to that of a set of U(1) quantum rotors.

see this, we assign an orientation to the diamond lattice links
using the bipartiteness of that lattice as follows. The A sites
are those defined as ‘UP’ tetrahedra in figure 1 and the B sites
corresponding to the ‘DOWN’ tetrahedra. We let the links
have orientation towards the A sites and away from the B

sites. Having done this, we introduce so-called oriented link
variables defined through

BLA→B
= +

(
nL − 1

2

)
(10)

which we call magnetic fields (since they are related to the
orientation of the physical microscopic magnetic moments)
and with the sign reversed when the orientation is reversed
(BLA→B

= −BLB→A
). Now, the constraint on QI in

equation (9) is ∑
L

BL = 0, (11)

which is recognizably Gauss’ law discretized on a lattice.
The ring exchange term of equation (5) gets modified when

we enlarge the Hilbert space from the dimer model by moving
over to the occupation number operators nL. The conjugate
variables to nL are phases φL and the operators exp(±iφL)

raise (+) and lower (−) the occupation numbers on links. In
the next step, to make the correspondence with a U(1) gauge
theory, we give these phases an orientation on the links (as
described above) and rename them φL → AL. With these
steps, we obtain the Hamiltonian [49, 63, 64]

HGauge = U
∑

L∈Links

B2
L − K

∑
P

cos


 ◦∑

L∈{�}
AL


 , (12)

where the sum overAL is an oriented sum around a hexagon and
we call the flux variable through a given hexagonal plaquette
P the electric flux EP. This electric flux is not to be confused
with the physical (or fundamental) electric field that would
enter the theory when considering, for example, the dielectric
response of the system [65].

In summary, the first term on the right hand side of
the Hamiltonian in equation (12) is there to impose the
constraint on the (diamond lattice) link occupation number
nL so that it assumes only values 0 and 1. The second term
in equation (12) is the ring exchange of equation (6), but
now written explicitly in terms of a vector potential AL. The
model is consistent when Gauss’ law, equation (11), is satisfied.
This is a quantum theory because the field components satisfy
canonical commutation relations [BL, AL′ ] = −iδLL′ . Taken
together, these ingredients constitute a version of quantum
electromagnetism on the lattice with BL as the magnetic field
components and the cosine in the right hand term of the
Hamiltonian (equation (12)) as the lattice analogue of electric
flux. Schematically, this route from the dimer model to a gauge
theory is outlined in figure 8.

We note that the vector potential AL is defined modulo
2π in contrast to ordinary electromagnetism in the continuum
where it is defined over all real numbers. The effective
low energy gauge theory of quantum spin ice is therefore a
compact gauge theory with gauge group U(1), the group of
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Figure 8. Illustrating the connection between the gauge theory
degrees of freedom and the quantum dimer states. Each link of the
diamond lattice in the gauge theory has a tower of states, labelled by
integer nL connected by raising and lowering operators e±iφL where
φL is an operator with continuous spectrum. The nL and φL on each
link are unoriented. When they are assigned an orientation they
become, respectively, magnetic fields BL and vector potentials AL.
When U in equation (8) is taken to be large, all magnetic field states
except for BL = 0, ±1 are gapped out. The low-lying magnetic field
states coincide with the allowed dimer states with occupation
number nL = 0 (‘empty link’) and nL = 1 on each link.

phase rotations. The origin of the compactness is the discrete
spectrum of magnetic field states on each link which itself
comes from the discrete dimer constraint. The compactness of
the U(1) gauge theory has one crucial consequence that sets
it apart from ordinary electromagnetism, namely, that there is
a novel charge-like excitation in the theory—the vison—with
no correspondence to the magnetic monopoles of classical spin
ice. This lowest energy gapped excitation plays (see figure 3)
a crucial role in determining the phases of the lattice gauge
theory.

Having reviewed the essential steps leading to the
construction of a gauge theory for quantum spin ice systems,
we next discuss the phases of this theory. We will end up
with the conclusion that the quantum liquid phase of the
dimer model of the previous section can be thought of as the
deconfined phase of the compact U(1) gauge theory. This
means that the compactness of the gauge theory is unimportant
in the low-energy limit or, equivalently, the fluctuations of
the electric flux are small. In the deconfined phase, we may
then expand the cosine of the Hamiltonian equation (12),
omitting all but the lowest order nontrivial contribution. The
Hamiltonian is then

HGauge,Deconfined = U
∑

L∈Links

B2
L + K

∑
Plaq.

E2
P, (13)

where EP is, slightly unconventionally (see section 2.2), the
circulation of AL around plaquette P

EP = ◦∑
L∈{�}

AL.

This Hamiltonian is recognizably a discretized form of the
Hamiltonian describing electromagnetism in the absence of
charges. This means that the excitations at low energy
are photons—with linear dispersion and two transverse
polarizations.

Before we discuss in more detail the phases of
equation (12), we take the opportunity to make the following
observation. The discretized compact electrodynamics that
we have discussed above differs from the standard Abelian
lattice gauge theory that has been studied traditionally by lattice

gauge theorists in one crucially important respect. Namely, at
strong coupling U/K → ∞, the Hamiltonian of equation (12),
has nL = 0, 1 within its vacuum (constrained by Gauss’ law)
corresponding to the spin ice configurations or superpositions
of these states. Typically, pure Abelian gauge theories at strong
coupling have a trivial vacuum with nL = 0. In the literature,
gauge theories with a trivial vacuum have come to be called
‘even’, or unfrustrated, gauge theories to contrast them with
gauge theories such as equation (12), which are called ‘odd’ or
frustrated gauge theories [63]. The nature of the vacuum states
at strong coupling makes a dramatic difference to the nature of
the phase diagram as a function of the coupling K/U .

As discussed above, the unfrustrated gauge theory (with a
trivial vacuum at large U ) is known to have two phases in the
3 + 1 dimensional case of interest here due to the well-known
work of [66–70]. When U/K is small, there is a gapless
photon excitation and a Coulomb law between test charges
(both monopoles and visons) inserted into the system. This is
the deconfined, Maxwell or Coulomb phase. In the opposite
limit, with large U/K , the theory is confining, meaning that
the photon is gapped out and particles with opposite electric
charges are bound together by a potential which grows linearly
in the separation of the charges. There is a critical (U/K) value
at which the theory undergoes a transition between a confined
and deconfined phase [66–68].

The frustrated theory, in contrast, maps to the µ/V = 0
dimer model for large U/K . The evidence from numerical
simulations is that the dimer model is in a deconfined phase
when the ring exchange term is the only term present in the
Hamiltonian (i.e. at µ/V = 0 of the phase diagram shown in
figure 7) [55, 62]. When U/K is small in the frustrated gauge
theory, the frustration should not be important and, once again,
we expect the theory to be deconfined. In summary, it appears
that confinement may be completely absent in the frustrated
gauge theory, though, to our knowledge, this has not been
established beyond the heuristic arguments given here. Since
the deconfined phase of a U(1) gauge theory exhibits universal
features, it should not matter whether the dimer model (in its
deconfined phase) maps to a frustrated or unfrustrated gauge
theory—the excitations below the energy scale of the hard
core dimer violating fields (set by U ) in the frustrated gauge
theory can be inferred from the unfrustrated gauge theory about
which much is known [66, 67, 69, 70]. In the next section, we
borrow insights from the deconfined phase of the unfrustrated
gauge theory to say something about the phenomenology of the
deconfined phase of the quantum dimer model or, by extension
via the series of mappings reviewed above, quantum spin ice.

3.3. Quantum liquid: excitations and phenomenology

The perspective on the quantum spin ice problem gained by
thinking about the deconfined phase of U(1) lattice gauge
theory allows us to infer the nature of the excitations in
the dimer model. At energies below the scale of the ring
exchange Jring in the deconfined phase, where fluctuations
of the gauge field AL are small, the compactness of the
theory should not matter, and we recover familiar non-compact
electromagnetism with gapless photon excitations with a pair
of transverse components.
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At much higher energies, on the scale of the Ising
exchange term J‖ in the original spin model, there are gapped
magnetic charge excitations (the ‘monopoles’ of section 2.1)
corresponding to spin flips out of the manifold of spin ice states.
Both in classical and in quantum spin ice, single spin flips
correspond to a breaking of the divergence-free condition on
the magnetic field, BL, and hence the creation of magnetic
field sources or magnetic charges. Via successive spin flips, it
is possible to separate these charges. Whereas in classical spin
ice an effective magnetostatic interaction arises between these
charges owing to thermal averaging solely over circulations
of the field BL, in quantum spin ice these magnetic charges
interact both with the emergent magnetic and electric fields13.

At intermediate energies, a third type of excitation is
present, which arises from the compactness of the gauge field.
These are the aforementioned visons. For readers familiar
with Z2 spin liquids, it might be helpful to point out that
the magnetic charges in U(1) spin liquids are the analogues
of so-called gapped Z2 flux excitations, also called visons in
these systems [50]. One way of seeing that these should be
present is as follows. The loops of dimers in the quantum dimer
model introduced above may be interpreted as magnetic field
strings within the language of gauge theory. While the dimer
model is defined to be a theory of closed strings, excitations
out of the spin ice manifold may occur in the original spin
model breaking these strings and lead to the magnetic charges
(monopoles). Importantly, there are now also electric loops
in the theory. These, unlike the magnetic strings, are not
imposed by a kinematic constraint such as that of equation (9).
Instead, they arise from the dynamics of the dimer model—
the resonating hexagonal plaquettes form loops of electric
fluxes. When these flux strings break, the string endpoints
form new sources: “electric charges” which are gapped in the
liquid phase with a gap of the order of Jring. This picture
of visons appearing at ends of broken (electric) strings is true
also for the vison excitations in Z2 spin liquids. The visons are
massive particle-like excitations with a net electrical charge.
Given the pyrochlore lattice structure, they can be thought of
as hopping on a second diamond lattice, displaced from the
original diamond lattice, on which the magnetic charges hop by
half of one elementary cubic cell in each coordinate direction14.

13 In this paragraph we refer to nearest neighbour classical spin ice in which
there is an emergent Coulomb potential between monopoles, which is of
entropic origin. In dipolar spin ice, there is an effective (energetic) Coulomb
potential arising directly from the dipolar interaction [31].
14 It is worth pointing out that magnetic monopoles in high-energy physics
have a similar origin to the vison excitation discussed here. In brief, gauge
theories where electromagnetism arises from a compact U(1) subgroup of a
larger compact gauge group have gapped magnetic charge excitations which
are generalizations of the visons obtained here. In the Standard Model they
do not appear because the electromagnetic gauge group is non-compact.
However, magnetic monopoles appear when the Standard Model is embedded
in a theory with a larger symmetry including the famous SO(10) Grand
Unified Theory (GUT) of the strong, weak and electromagnetic interactions
[71]. One of the features of compact U(1) gauge theory is that charges
(the visons and monopoles) are naturally quantized. This feature assumes
some importance in fundamental physics where the quantization of charges is
something that one would like to explain. Within the aforementioned GUT,
the appearance of monopoles goes hand-in-hand with the quantization of the
fundamental charges (among other important features). Such GUTs have
inspired experimental searches for magnetic charges [72].

Having noted the types of excitations and the hierarchy
of energy scales in quantum spin ice, we turn to plausible
experimental signatures of a magnet with a low-energy U(1)

phase. At the highest temperatures, the magnet is a featureless
paramagnet. Upon cooling, the material enters a classical spin
ice regime with a temperature dependent density of monopoles
and Pauling residual entropy. This state of matter is well-
known to exhibit distinctive dipolar spin–spin correlations,
which show up as pinch points in the neutron scattering cross-
section [34]. The quantum dimer model at infinite temperature
is nothing other than classical spin ice with no monopoles and,
therefore, this model does not capture the crossover into the
true high-temperature paramagnetic regime of the underlying
spin model [53].

At the lowest temperatures, within the U(1) phase, there
should be quite distinctive experimental signatures. While
there should be no magnetic Bragg peaks, inelastic neutron
scattering can in principle probe the linearly dispersing photon
modes as recently worked out in [56] since, like magnons, these
excitations carry spin one. Our calculation of the expected
inelastic scattering pattern (based on that in [56]) between high
symmetry points in the Brillouin zone is shown in figure 9(a)
where the most energetic modes appear on the scale of the ring
exchange coupling. The energy-integrated scattering at zero
temperature is presented in figure 9(b). Thermal fluctuations
cause the photons to decohere and the neutron cross-section
crosses over smoothly into the pinch-point scattering of
classical spin ice [56] as shown in figure 9(c).

At intermediate temperatures, the phenomenology is,
to date, not completely clear. The asymptotically low-
temperature T 3 (thermal radiation) law in the heat capacity
should break down as visons and magnetic charges become
thermally nucleated and the entropy recovers from zero, at
zero temperature, to the Pauling entropy, in the classical ice
regime15. These effective charges will also lead to diffuse neu-
tron scattering as is well-known in classical spin ice [33, 46].

Also, the analogy with the compact U(1) gauge theory
suggests that thermal fluctuations should give the photon
a small mass and the otherwise Coulomb-like electric and
magnetic charges should become screened16. Whereas the
thermal occupation of photon modes is sufficient to observe the
crossover between quantum and classical ice, and although the
quantum liquid at zero temperature is adiabatically connected
to the trivial paramagnet, a more featured scenario is possible.
In particular, a form of gauge mean-field theory (gMFT) for
quantum spin ice (QSI) produces, at finite temperature, truly
novel behaviour: a first order transition between the high-
temperature paramagnet and an incoherent classical spin ice
state [53].

15 It is intriguing to ask whether the recent report of a rise in the specific heat
of the Dy2Ti2O7 spin ice material [20] may be an indication of condensation
of the visons below a temperature scale T ∼ Jring
16 At finite temperature, the temporal direction of the 3 + 1 dimensional
gauge theory is wrapped onto a circle of radius 2πβ where β is the inverse
temperature. At high temperatures the radius of the circle is small so that the
3 + 1 dimensional gauge theory may be viewed as a 2 + 1 dimensional gauge
theory at zero temperature. In three dimensions, the Wilson loop expectation
value exhibits an area law [66]. Then, the same argument that implies that the
2 + 1 dimensional gauge theory has a gapped photon can be used to see that
the four dimensional gauge theory does as well at high temperatures [73, 74].
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Figure 9. Characteristic neutron scattering patterns observed for QSI. Panel (a) shows the characteristic inelastic scattering from photon
excitations. The reciprocal space path is taken along straight lines between high symmetry points in the Brillouin zone. Panels (b) and (c)
show the unpolarized energy-integrated scattering for photon scattering for zero temperature and high temperature (compared to the ring
exchange) respectively. The high-temperature plot is similar to the scattering expected for classical spin ice. The temperature is measured in
units of c/a0 where c = √

UKa0h̄
−1 is the velocity of the linearly dispersing excitations and a0 is the cubic unit cell edge length for the

pyrochlore lattice. The dynamical structure factor and unpolarized energy-integrated scattering were computed from formulae in [56].

3.4. Stability of the U(1) liquid

One of the remarkable features of the U(1) spin liquid is
that it is stable to all local perturbations [49, 75, 76]. This
is surprising for at least two reasons. One is simply that
the phase is gapless and there is therefore an a priori danger
that some perturbations may open a gap. A second reason
is that the gauge invariance of the lattice model is not exact
but is an emergent property at low energies. One can see by
power-counting that all gauge non-invariant perturbations to
the Maxwell action are relevant in the renormalization group
(RG) sense in (3+1) dimensions [57] so one might expect
that the U(1) liquid would not survive such perturbations17.
Crucially, for the search of this exotic state of matter among
real materials, it turns out that this fear is likely not justified as
we now discuss.
17 The deconfined phase comes with a natural cutoff—the magnitude of the
transverse terms (∝J⊥) in the spin Hamiltonian equation (4)—below which we
expect that we do not have to worry about gauge invariant interactions beyond
the Maxwell action. One can see that this is the case by studying the kinds of
gauge invariant terms that one can add to the low-energy effective theory. The
aptly named irrelevant operators in the theory are suppressed by powers of the
(large) cutoff at long wavelengths so that their effect at sufficiently low energies
is negligible. The relevant operators are not suppressed in this manner. Power
counting is a simple criterion to assess how couplings flow under a change of
scale. Specifically, the irrelevant operators have couplings with dimensions of
some negative power of the energy scale where the dimension is determined
directly from the action.

Because the U(1) gauge theory originates from a
microscopic spin model on a lattice, the gauge group is
compact so gauge non-invariant terms such as M2A2 are
not allowed in the theory. Instead, the gauge non-invariant
perturbations can only appear through terms like exp(iA),
which are magnetic monopole hopping operators, or from
terms that hop visons. But then, since both matter field
(vison and magnetic) excitations are gapped, these gauge non-
invariant operators cannot affect the low-energy physics—the
U(1) liquid is stable to all gauge non-invariant perturbations—
while all gauge invariant perturbations are irrelevant in the
RG sense. There is some work putting these arguments on a
rigorous footing using the idea of quasi-adiabatic continuity.
The idea, roughly stated, is to switch on a gauge non-invariant
perturbation to the U(1) liquid with small coupling s, which
has the effect of taking the ground state |�(s = 0)〉 into
|�(s)〉. Then one transforms all the operators O in the theory
in tandem with the switching on of the perturbation in such a
way as to (i) preserve the locality of the operators and (ii)
so that the expectation values of operators O(s) computed
using the |�(s)〉 and the dressed operators are the same as
those computed using |�(s = 0)〉 and the undressed operators
O, up to corrections that vanish in the thermodynamic limit.
The authors of [77] were able to show that, although the
bare Hamiltonian has small gauge non-invariant terms, the
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generators of gauge transformations are dressed after the
addition of these perturbations to the bare model in such a
way that a local gauge invariance survives in the dressed
model. Although unproven, this is thought to preserve also
the gaplessness of the theory.

3.5. Naturalness of the U(1) liquid

In the previous section, we explained that the U(1) liquid
has the remarkable property of being stable to all local
perturbations. This means that if the U(1) liquid is known
to occur at some point in the space of all possible couplings,
then one can vary the couplings in any direction in the space of
couplings by a finite amount with the ground state remaining
in this phase (unless our original point is at a phase boundary).

While it might be possible to engineer a quantum system,
perhaps a trapped cold atom system, that enters the U(1) phase,
in the immediate future the most likely candidate systems
that might host such a phase are certain pyrochlore magnets.
Assuming this to be the case, the stability of the U(1) liquid
is of marginal relevance compared to the broader issue of
whether the space of couplings explored by real materials
accommodates the U(1) phase over a significant region in this
space. In short, it is useful to know whether the U(1) liquid
is too finely tuned to be observed in at least one of the set of
stable pyrochlore magnets. If a U(1) liquid were discovered
we could, with reasonable confidence, pronounce that such
phases are natural in parameter space. Since a deconfined
U(1) liquid phase has not been found in any of the pyrochlore
magnets (at the time of writing), the question is worth asking
from the perspective of microscopic models because it has a
bearing on the discoverability of such phases and may provide
some guidance to the experimental search.

To date, the naturalness of quantum spin liquids in general
is largely an open question [2]. For the particular problem of
the naturalness of the Coulomb phase in pyrochlore magnets,
the location of the U(1) liquid phase within the space of
nearest-neighbour anisotropic exchange couplings has been
partially mapped out within a form of gMFT for odd electron
(Kramers) magnetic ions [51, 53] and even electron (non-
Kramers) ions [52]. The zero temperature gMFT employed
by the authors of these papers is a variant of slave particle
mean-field theory which, in this case, involves the formally
exact step of splitting the anisotropic exchange Hamiltonian
equation (14) in section 4.1 below into gauge field degrees
of freedom defined on links of the diamond lattice and new
boson fields defined on the centres of diamond sites. The
latter bosonic fields are referred to as spinons in these papers
and as magnetic monopoles here (see section 2.2 on naming
conventions). One decouples the resulting interacting theory
and solves self-consistently for the expectation values of the
gauge field and monopole fields. Whereas the frustrated gauge
theory discussed in section 3.2 describes the physics of the
quantum spin liquid within the spin ice manifold, the aim
of the gMFT is to capture further aspects of the physics of
the full anisotropic spin model on the pyrochlore. This is
the reason why, in addition to a compact gauge theory, one
has couplings to electrically charged matter fields and one

can expect Higgs phases, in addition to possible deconfined
and confined phases. Higgs phases have the property that
the photon is gapped out by the condensation of the bosonic
matter fields; in some sense they are superconducting phases.
The criteria for distinguishing different phases of the resulting
gauge theory—deconfined, confined and Higgs phases—are
reminiscent of those in works on the mean-field theory of lattice
gauge theories (see, for example, [78, 79]). The principal
difference between the types of theories considered in that
early work compared to those arising from the pyrochlore
spin models is that the former have explicit gauge kinetic
terms in the action whereas, in the latter, there are only
matter–gauge couplings—the gauge kinetic terms being solely
generated by the dynamics of the monopole fields. Secondly,
the phase diagram of the gauge theory can be interpreted
in the language of the microscopic spin/magnetic degrees of
freedom. Specifically, the confined phase corresponds to some
ordered spin ice phase while Higgs phases are long-range
ordered magnetic phases in which the moments have nonzero
expectation value perpendicular to the local 〈110〉Ẑi1 Ising
directions. Phase diagrams produced by solving the gMFT
are shown in figure 10. The CFM phase is characterized
by the co-existence of dipolar (ferromagnetic) long-range
order with time-reversal symmetry breaking accompanied by
fractionalized excitations including the gapless photon and
deconfined magnetic monopole excitations (again, referred to
as spinons in [51, 53]).

The phase diagrams arising from the gMFT show the U(1)

liquid phase surviving out to couplings J⊥/J‖ ∼ O(10−1)

away from the classical spin ice point (where only J‖ �= 0)
[51, 52]. Supposing that the mean-field theory roughly cap-
tures the U(1) phase boundary, we next turn to the natural-
ness of materials with exchange couplings satisfying J⊥/J‖ ∼
O(10−1). In other words, we consider the physics that leads
to XXZ-like models in pyrochlore magnets conceptually akin
to that of equation (4) with a dominant Ising term HCSI.

The crystal field, in tandem with spin–orbit coupling,
which are responsible for the single-ion magnetic anisotropy,
become increasingly important for magnetic ions further down
in the periodic table. This trend coincides with a reduction of
the typical exchange couplings. Ising magnetism protected
by the largest anisotropy gaps relative to the interactions is
expected to occur among the rare-earth or actinide magnets.
Indeed, among the rare-earth pyrochlores, typical crystal field
anisotropy gaps are of O(102) K [80, 81] while, thanks to the
still sufficiently high trigonal symmetry, the single ion ground
states are often doublets with effective exchange couplings of
order O(1) K between effective spin-1/2 degrees of freedom.

The crystal field ground state doublet of ‘would be non-
interacting’ non-Kramers ions is strictly Ising-like. In these
systems, effective transverse exchange couplings between the
low energy effective spin one-half moments may arise in
two ways: via multipolar couplings [82, 83] and via mixing
with excited crystal field levels [84, 85]. The latter effect is
suppressed by powers of 1/	, where 	 is the energy gap to the
first excited crystal field states, while multipolar couplings of
superexchange origin are suppressed by powers of the charge
transfer gap. In such non-Kramers materials, Ising models
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Figure 10. Zero temperature mean field phase diagrams taken
through sections in the space of symmetry-allowed nearest
neighbour exchange couplings on the pyrochlore lattice. The mean
field theory (gMFT), described in the main text, can capture both
conventionally ordered and quantum spin liquid phases. Panel (a)
(for odd electron magnets) shows a pair of exotic phases emerging
from the classical spin ice point J± = 0 and Jz± = 0—the quantum
spin ice (QSI) and Coulombic ferromagnet (CFM). The gMFT does
not capture the perturbatively exact phase (in small parameter
Jz±/Jzz) [51, 53]. Panel (b) is a schematic plot to show the likely
effect of correcting the gMFT to account for the perturbative result.
Panel (c) is a phase diagram for even electron systems showing the
quantum spin ice phase and two quadrupolar phases [52].

with weak transverse couplings are therefore expected to be
natural, as we discuss in section 4.1. Pragmatically speaking,
this is further borne out by the existence of the spin ice
materials in particular Ho2T2O7 with a non-Kramers Ho3+

ion, which are very well described by a classical dipolar Ising

spin ice model [23, 26, 86]. While the energy scale J⊥/J‖ is
sufficiently small that the effective ring exchange term may
be typically negligible among ‘classical’ spin ice materials
such as Dy2Ti2O7 and Ho2Ti2O7, a number of rare-earth
pyrochlores are coming to light that exhibit some quantum
dynamics [87, 88]. We return to this topic in section 4.2. It
is of considerable interest to establish the nature of the low-
temperature magnetism in these materials. Unfortunately,
the degeneracy of non-Kramers crystal field doublets being
accidental, it is sensitive to perturbations that need not be time-
reversal symmetry invariant. It is then important to address
the size of likely ring exchange terms compared to crystal field
degeneracy-breaking perturbations.

The crystal field ground state doublets of Kramers ions are,
by comparison, robust to time-reversal invariant perturbations
and there are no a priori symmetry constraints on the relative
strength of the effective anisotropic exchange couplings (such
as J‖ and J⊥). Such materials are thus expected to afford
an exploration of the full space of symmetry-allowed nearest-
neighbour couplings. We would then expect to commonly find
J⊥/J‖ ∼ O(1) among Kramers ions. The recently determined
couplings in Yb2Ti2O7 [89–91] and Er2Ti2O7 [92, 93] bear out
this expectation. The gMFT described above yields a region of
parameter space in which the U(1) liquid lives where the trans-
verse terms are not necessarily much smaller thanJ‖, indicating
that the U(1) liquid may not be unnatural in Kramers rare-earth
pyrochlores. Indeed, there is extensive on-going work explor-
ing the nature of the low-temperature phase of Yb2Ti2O7 [89–
91, 94–96], a matter we return to in section 4.2.3.

The perturbation theory deployed to find the ring exchange
Hamiltonian earlier in section 3.1 does nothing to suppress
Ising couplings beyond nearest neighbour [25, 26], which may
be of superexchange or multipolar origin, or from the long-
range dipolar interaction [23, 26], the latter being typically
large among rare-earth and actinide magnetic ions. Such
Ising couplings tend to lift the degeneracy of the ice states
[28, 29] and the stability of the U(1) liquid ultimately boils
down, roughly, to a comparison of the energy scales of ring
exchange and of the further neighbour Ising couplings of the
form J zz

ij (rij )S
zi

i S
zj

j . Reference [56] includes a study of the
effect of the third neighbour Ising coupling on QSI, finding that
it drives long-range order above some threshold that is O(1)
times the ring exchange coupling. It would be interesting to
consider further the role of couplings beyond nearest neighbour
on the U(1) phase.

In summary, the lanthanide (4f) pyrochlore magnets
offer a tantalizing opportunity to discover QSI phases. For
Kramers magnets among these materials, it is possible to
satisfy all the criteria necessary to see QSI physics and
the main difficulty to be overcome is the large space of
parameters that such materials can, in principle, explore. In
non-Kramers magnets, the pessimistic perspective that such
materials should be of no interest for exotic quantum states
of matter, because of their large angular momentum J and
large single-ion anisotropy, is not correct. Thanks to well-
isolated low-energy Ising doublets, the underlying high-energy
microscopic Hamiltonian can, once projected in the low-
energy Hilbert space spanned by the doublets, be described
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by an effective spin-1/2 Hamiltonian allowing for significant
quantum dynamics. Indeed, a microscopic calculation for a
toy-model of Tb2Ti2O7 makes this point crisp [84, 85]. Unlike
Kramers magnets, crystal field degeneracies in non-Kramers
magnets are sensitive to being broken by disorder and sample
quality will be a particularly important issue. Unfortunately,
short of having ab initio calculations guidance, it is a matter
of luck finding the right material that falls in a regime of
interactions where a U(1) spin liquid is realized, or some other
novel quantum states [51]. We discuss this topic further in
section 4.1.

3.6. A broader perspective on QSI

In this review, we have concentrated on the possibility that the
deconfined phase of a U(1) gauge theory can arise in certain
pyrochlore magnets. This discussion would be incomplete
without widening the scope a little by mentioning some other
models with emergent low-energy U(1) liquid phases.

A natural place to begin is the work of Baskaran and
Anderson [97] and Affleck and Marston [98], who used
slave bosons to study certain quantum spin models in 2 + 1
dimensions. Within this approach, the spins are fractionalized
into bosons with an accompanying U(1) gauge redundancy.
The pure U(1) gauge theory is compact and is confining in
(1 + 1) and (2 + 1) dimensions: the gauge boson is gapped
out and the matter fields to which it is coupled are bound into
states of zero gauge charge [66–68]. This argument implies
that the analogue of QSI in two dimensional (2D) magnets is a
long-range ordered magnetic phase, which has been explored
in various works [99–102]. The implication of confinement
for the slave boson procedure is that the fractionalization of
spins is not a correct description of the physics in the cases
studied in [97, 98].

Fluctuations of the gauge field in slave particle
descriptions of quantum spin models can be suppressed by
taking the SU(2) magnet to SU(N) in the large N limit,
leading to deconfinement even in 2D magnets. In this limit,
slave particle mean-field theory is a controlled approximation
[76, 103, 104]. A promising direction, motivated by slave
fermion treatments of quantum magnets, comes from recent
work showing that fractionalization is possible in 2 + 1
dimensions either when U(1) gauge fields are coupled to
a number n of different types of fermion with a Dirac
dispersion [105, 106] (where n need not be very large) or
in the presence of a Fermi surface [107]. The physical
significance of these results, and perhaps a broader lesson,
is that a deconfined U(1) liquid phase may arise in condensed
matter models of real materials with 2D magnetism despite
the fact that the minimal 2 + 1 gauge-only U(1) theory is
confining [66–68].

In 3 + 1 dimensions, as we have described in preceding
sections, the U(1) gauge theory can have a deconfined phase.
One of the earliest examples of a bosonic model with emergent
low-energy electromagnetism is described in [75], which
argues that certain compact but non gauge invariant theories
can exhibit deconfined emergent electromagnetism at low
energies. In a condensed matter context, apart from the

QSI state of the pyrochlore XXZ model, a U(1) liquid is
expected also for the partially magnetized pyrochlore magnet
with three of the four tetrahedral sublattice spins pointing along
an applied field and the remaining spins anti-aligned along the
field [61, 108]. The resulting spin model, in common with
the XXZ model in zero field, maps to a dimer model which
has been extensively studied [54, 61, 108–110]. Apart from
quantum magnets, there is theoretical and numerical evidence
for the emergence of a gapless photon in models of exciton
condensates [111–113], in a rotor model on a cubic lattice
[114, 115] and there is a suggestion that protons in conventional
water ice might be strongly correlated and, through quantum
mechanical tunnelling of the protons, also display a deconfined
U(1) phase [64]. There is also a proposed way of simulating a
rotor model with emerging photons at low energies in a system
of trapped cold atoms on a pyrochlore lattice [116].

The quantum U(1) liquids can be viewed as string-net
condensate phases as made explicit in a three dimensional (3D)
rotor model of Levin and Wen [117]. String-net condensation
is a framework within which a class of achiral gauge theories
can be understood [117, 118]. The idea, stated briefly, is
that these phases can be obtained by specifying a lattice
model with elementary bosonic degrees of freedom and a local
Hamiltonian that condenses closed loops of different types into
the ground state of a bosonic model. The Hamiltonian may
also contain terms that give the condensed strings a tension,
which breaks the degeneracy of the resulting equal weight
superposition of string states. Excitations of the string-net
condensate are the end points of closed strings and correspond
to charges of some gauge theory. This framework offers a way
to generalize the toric code of Kitaev [119] by writing down
an infinite set of exactly solvable models with Hamiltonians
consisting of mutually commuting terms.

Instabilities of the U(1) liquid towards ordered magnetic
phases due to the condensation of visons (which are gapped
in the deconfined phase) has been studied in several works
[108, 120, 121]. We also note that a 3D U(1) gauge theory
coupled to a bosonic matter field has been found useful to
describe transitions out of classical spin ice [122], through
the condensation of the matter field, to give Higgs phases. In
this context, the Higgs phases are magnetically ordered phases
within the spin ice manifold.

While the focus of this review is on 3D QSI systems, we
note that recent numerical work has investigated a 2D QSI
model in which the quantum fluctuations are induced by a
magnetic field 
 transverse to the Ising direction [123]. The
various ground states are a plaquette valence bond solid at
small 
, a canted Néel ordered phase at intermediate 
 and
a polarized quantum paramagnet above a critical 
c value.
No quantum disordered (spin liquid) phase is found for the
smallest 
 investigated. Although this system is described by
a frustrated gauge theory, the numerical results suggest that
confinement is at work, leading to gapped ground states via
an order-by-disorder mechanism, as opposed to a deconfined
Coulomb phase. This is to be expected on the basis of standard
results for confinement in non-frustrated U(1) gauge theory in
2 + 1 dimensions [66].
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4. A materials perspective

4.1. General considerations

We discussed in section 3 how the spin liquid state of
QSI materials originates from the (perturbative) anisotropic
interactions between effective spins one-half away from the
frustrated classical Ising limit. Central to this story was the
point that the model of equation (4) generates the crucial ring
exchange Hamiltonian of equation (5) that drives classical spin
ice into the U(1) spin liquid state. Yet, we did not explain
how equation (4) arises from the microscopic (high energy)
interactions between the magnetic ions. We explore in this
subsection where the effective spin-1/2 model comes from
and how it is amended when considering real QSI candidate
pyrochlore materials such as the ones discussed in section 4.2.

In the search for QSI materials, we are de facto seeking
systems with strong effective Ising-like anisotropy such that
the order zero of the effective spin Hamiltonian is given
by HCSI in equation (3). Such leading HCSI interactions
may arise from the single-ion anisotropy, as in (Ho, Dy,
Tb)2Ti2O7, or it may be inherited from the interactions between
the ions themselves, even though the single-ion anisotropy
of a would-be isolated ion may not be Ising-like, as is the
case for Yb2Ti2O7 [89–91, 124–127]. We are thus looking for
materials that possess spin–orbit interactions that are stronger
than the crystal field interaction and where the orbital angular
momentum of the unpaired electrons is not quenched. In
practice, one expects to find such a situation most prevalently
among rare-earth (lanthanide, 4f or actinide, 5f) elements.
However, it is perhaps not ruled out that some materials
based on 3d, 4d or 5d elements may eventually be found to
display some of the classical or QSI phenomenology described
above. For example, Co2+ magnetic ions often exhibit a strong
Ising-like anisotropy, as found in the quasi-one-dimensional
Ising-like antiferromagnet CsCoBr3 compound [128]. In that
context, one may note that the GeCo2F4 spinel, in which the
magnetic Co2+ ions reside on a (pyrochlore) lattice of corner-
sharing tetrahedra, has been reported to display co-existence
of spin ice, exchange and orbital frustration [129]. In the
following, we restrict ourselves to insulating magnetic rare-
earth pyrochlores of the form R2M2O7 [130] where R3+ is
a trivalent 4f rare-earth element and M is a non-magnetic
tetravalent ion such as Ti4+, Sn4+ or Zr4+. Indeed, all materials
for which QSI phenomenology has so far been invoked are
based on rare-earth pyrochlores.

The hierarchy of energy scales at play in rare-earth ions
make them well suited for a material exploration of QSI
physics. In these systems, the spin–orbit interaction is larger
than the crystal field energies, but not stronger than the intra-
atomic electronic energy scale. Consequently, the spin–orbit
interaction acts within the states defined by Hund’s rules and
leads to a 2J +1 degenerate ionic ground state of spectroscopic
notation 2S+1LJ where J = L+S if the 4f electron shell is more
than half-filled and J = L − S otherwise. Note that S here is
the single-ion electronic spin and not the pseudospin-1/2 S of
the Hamiltonian in equations (4) and (14) below. The effect of
crystal-field perturbations (originating from the surrounding
ligands) is to lift the degeneracy of the 2S+1LJ isolated ionic

ground state. For the R2M2O7 pyrochlores with Fd 3̄m space
group, odd-numbered electron (i.e. Kramers) ions (e.g. Dy,
Er, Yb) have a magnetic ground state doublet and so do even-
number electron (i.e. non-Kramers) (Pr, Tb and Ho) ions [130],
but not Tm3+, which has a non-magnetic singlet [131]. In other
words, the symmetry is sufficiently low for Kramers ions to
cause them to have solely a doublet crystal field ground state,
while the symmetry is still sufficiently high for non-Kramers
ions for them (except Tm3+) to have an accidental magnetic
doublet ground state.

At this point, armed with the knowledge about the single-
ion crystal field states [81], one can, in principle, start
to consider the inter-ionic interactions, Hint, and construct
the pertinent microscopic (‘UV’) Hamiltonian from which
realistic amendments of equation (4) would result when
perturbing the crystal field ground state with Hint. It is here
that the problem gets complicated—especially when compared
with, say, 3d transition metal ion systems. In 3d systems,
the angular momentum is typically quenched, the spin–orbit
interaction is small and one is often dealing with a relatively
simple spin-only exchange Hamiltonian of the form JijSi ·Sj .
In systems with 4f elements, except for Gd3+, most of the
angular momentum is provided by the angular momentum part
of the atomic electrons and is not quenched. Furthermore,
the relevant unfilled 4f orbitals are buried rather deep inside
the inner part of the ion, orbital overlap is reduced and direct
exchange or superexchange do not have the opportunity to
completely dominate in Hint. Consequently, the ion–ion
interactions among 4f systems end up having a multitude of
origins: classical electric and magnetic multipole interactions,
electric and magnetic multipole interactions, direct exchange
and superexchange and lattice-mediated interactions [132].
The microscopic couplings, �ij , between ions i and j defining
Hint, are thus of a very high degree of complexity [132]. The
microscopic Hamiltonian Hint can in principle be written in
terms of Stevens equivalent operators O(Ji ) [132]. However,
the determination or parametrization, either experimentally or
theoretically, of the pertinent (tensor) couplings �ij between
O(Ji ) andO(Jj ) (we have omitted here all angular momentum
components that would define the various components of �ij )
is enormously difficult to say the least. On the theoretical
front, it is even questionable whether estimates of �ij accurate
to within 100% of the true couplings could be achieved.

Yet, things are not as hopeless as they appear. For most
cases of interest, we have a situation where the �ij couplings
are of the order of 10−2–10−1 K or so, and are therefore
typically small compared to the gap 	 ∼ 101–102 K between
the magnetic crystal field ground doublet and the first excited
crystal field state(s) [81]. This means that the two pairs of
crystal field doublet wavefunctions for two interacting ions i

and j get very weakly admixed with the excited crystal field
states via the action of Hint. Out of the (2J + 1)N crystal field
states, where N is the number of ions, one can consider only the
subspace, �, spanned by the 2N individual single-ion crystal
field ground states [5]. One can then consider one of the many
variants of degenerate perturbation theory to derive an effective
S = 1/2 ‘pseudospin’ Hamiltonian, Heff, 1

2
, describing the

perturbed energies and eigenstates within �. Thanks to the
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relative high symmetry of the pyrochlore lattice, the projection
of Hint into � gives for nearest-neighbours of interacting ions
a relatively simple form for the effective nearest-neighbour
interactions between the pseudospins Si and Sj for ions i and
j . These effective interactions, Heff, 1

2
, are the ones that we

seek to spell out the additional symmetry-allowed couplings
in HQSI in equation (4). Several notation conventions have
appeared over the past two years for Heff, 1

2
[89,124, 126, 133–

135]. Here, we adopt the one introduced in [89] as it relates
most directly with equation (4):

Heff, 1
2

=
∑
〈i,j〉

{J‖Sz
i S

z
j − J±(S+

i S−
j + S−

i S+
j )

+ J±±[γijS
+
i S+

j + γ ∗
ij S

−
i S−

j ]

+ Jz±[(Sz
i (ζij S

+
j + ζ ∗

i,j S
−
j ) + i ↔ j ]}. (14)

In equation (14), 〈i, j〉 refers to nearest-neighbour sites of
the pyrochlore lattice, γij is a 4 × 4 complex unimodular
matrix, and ζ = −γ ∗ [89, 92]. In this formulation, the spin
components of the effective Si = 1/2 spins are now expressed
in terms of a local triad of orthogonal unit vectors x̂i , ŷi and ẑi

with ẑi along the local ‘Ising’ [1 1 1] direction, with ± referring
to the two orthogonal complex directions x̂i ± iŷi . As before,
we have HCSI = J‖

∑
〈i,j〉 S

z
i S

z
j , the classical (Ising) term

responsible for the spin ice degeneracy at the nearest-neighbour
level. The three other terms (proportional to J±, J±± and Jz±)
are all the extra nearest-neighbour terms allowed by symmetry
on the pyrochlore lattice [135], that do not commute with HCSI,
and hence cause quantum dynamics within the classical spin
ice manifold. One may ask what is the physical origin (or
content) of the terms proportional to J±, J±± and Jz± in Heff, 1

2
.

A simple perspective on this matter goes as follows. One may
consider the following four nearest-neighbour interactions on
the pyrochlore lattice [134]: (i) an Ising interaction J‖Sz

i S
z
j

as in equation (14), (ii) an isotropic interaction of the form
JisoSi ·Sj , (iii) a pseudo-dipolar ‘exchange’ interaction that has
the same ‘trigonometric form’ as magnetostatic dipole–dipole,
Jpd(Si ·Sj −3 Si ·r̂ij r̂ij ·Sj ) and, finally, (iv) a Dzyaloshinskii–
Moriya interaction of the form JDM(d̂ij ·Si×Sj ) [136]. The set
of interactions (J‖, Jiso, Jpd, JDM) can be linearly transformed
into the set (J‖, J±, J±±, Jz±).

We are in the very early days of the systematic
experimental and theoretical investigation of QSIs. On the
theoretical front, the immediate question is to determine
what are the possible zero-temperature phases that Heff, 1

2
displays. Using a form of gMFT, this question has been
tackled for systems with Kramers ions [51] as well as non-
Kramers ions [52] (non-Kramers ions must have Jz± = 0
[52]). Recent work has extended this approach to investigate
the nonzero temperature phase diagram of this model [53].
Examples of phase diagrams produced using this method
are shown in figure 10. Figures 10(a) and (b) show phases
expected through a section of the available space of nearest-
neighbour couplings for odd electron magnetic ions. Of the
two exotic phases in figures 10(a) and (b), one is the QSI
phase which is the topic of this review. This appears, as
we expect, from perturbation theory in the vicinity of the
classical spin ice point. The second (CFM) phase has co-
existing symmetry-broken long-range order, gapless photon

excitations and gapped magnetic monopoles. The FM and
AFM phases are respectively the six-fold degenerate FM state
with net moment along one of the the 〈0 0 1〉 directions and
an AF phase with moments perpendicular to the local 〈1 1 1〉
directions. For non-Kramers ions, we refer to figure 10 (c),
which shows the QSI and two quadrupolar phases. One of
the long-range ordered phases is ferroquadrupolar (FQ) and
the other antiferroquadrupolar (AFQ). The AFQ phase, in the
language of effective pseudospin-1/2, is a coplanar AF phase
while the FQ is the maximally polarized ferromagnet with
moments perpendicular to the local Ising directions [52].

For what concerns us here in this review, in terms of
the existence of a U(1) spin liquid, it probably suffices
to say that as long as J±, either positive or negative, is
the leading perturbation beyond J‖, while being sufficiently
larger than J±± and Jz±, one finds a finite region over
which the U(1) spin liquid is predicted to exist [49, 51–53].
Magnetic rare-earth ions often possess a sizeable magnetic
dipole moment. An obvious question is how the phase diagram
of [51–53] is modified by long-range magnetostatic dipole–
dipole interactions. Also, away from the U(1) spin liquid
phase of the phase diagram of [51, 52], one may expect to
encounter more complicated long-range ordered phases with
nonzero ordering wavevector [28, 137, 138].

We stated above that equation (14) represents the
most general nearest-neighbour anisotropic bilinear spin
Hamiltonian for pseudospin-1/2 on the pyrochlore lattice.
Further understanding on this matter has quite recently come
to light. It was pointed out in [139] that the crystal field
doublet of some R2M2O7 pyrochlore oxides (e.g. Nd2Zr2O7

and Dy2Ti2O7) may be a Kramers ‘dipolar–octupolar’ (DO)
doublet whose symmetry properties endow special properties
to the Hamiltonian (14). Specifically, for a DO doublet, two
components of the pseudospin-1/2 transform like a magnetic
dipole while the other component transforms like a component
of the magnetic octupolar tensor. An end result is that the
Hamiltonian of such a system is described by equation (14) but
now with the γij bond term independent of the 〈i, j〉 bond and
not given by the form in [51, 89]. The resulting ‘XYZ model’
may exhibit two distinct QSI phases: the aforementioned
‘dipolar’ QSI forming the focus of this review and a new
‘octupolar’ QSI phase. Of particular interest on the theoretical
front is that, in some region of coupling parameter space, the
XYZ model of [139] is predicted to be amenable to QMC
simulations without a sign problem. Further study of this
model is certainly warranted and will likely prove interesting,
opening a rare possibility to study a quantum spin liquid
through large scale Monte Carlo simulations of a frustrated
quantum spin system in three dimensions.

We end this subsection by a brief discussion about how
the coupling parameters (J‖, J±, J±±, Jz±) may be determined
experimentally—a necessary task if one wants to rationalize
the behaviour of real materials in relation to the theoretical
phase diagrams [51, 52]. First, we make a comment about
how the complexity of the microscopic interactions Hint ∼
�ijO(Ji )O(Jj ) was swept aside when Hint was projected onto
�. As long as |�ij | � 	, one can calculate any correlation
functions involving the observable Ji angular momentum
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operators via calculation of correlation functions involving the
effective Si spins. In such a case, the theory is quantitative and
characterized by the four (J‖, J±, J±±, Jz±) couplings (to be
determined by experiments) along with the magnetic dipole–
dipole interaction and the matrix elements of Ji within the non-
interacting ground state doublet (involving the so-called single-
ion g-tensor) [81]. However, if Hint significantly admixes
excited crystal field states into the ground state doublet,
observables involving Ji are no longer trivially related to the
pseudospins Si , and the theory is no longer quantitative if the
microscopic �ij couplings are not known [137]. We return
to this in section 4.2.1 when discussing the Tb2(Ti,Sn)2O7

compounds. The situation is conceptually similar to the
problem of calculating the staggered magnetization, M†, of the
simple square lattice one-band Hubbard model at half-filling
when recast as an effective spin-1/2 Hamiltonian. Away from
the Heisenberg limit, in which the hopping t is infinitely small
compared to the Hubbard U (i.e. t/U � 1), M† is a function
of t/U , and is no longer determined by the textbook formula
of the thermodynamic average of the staggered z component
of localized spin operators, Sz

i , given by M† = ∑
i (−1)i〈Sz

i 〉
[140]. The problem becomes even more complicated when
the microscopic model is that of an extended Hubbard model
[141] or a site-diluted Hubbard model [142]. In order to
calculate the staggered magnetization with the effective spin-
1/2 model the corresponding operator must be defined in
the microscopic (electronic) Hubbard theory first, and then
canonically transformed in the effective low-energy (spin-1/2)
theory [140–142].

Following the initial realization that anisotropic exchange
may be of importance in R2M2O7 materials [135], a number
of experimental studies, mostly using elastic and inelastic
neutron scattering, have been targeted to determine the value
of these couplings. These studies fall in two categories. A first
category has assumed that the nearest-neighbour parts of the
interactions Hint between Ji angular momentum operators are
bilinear and of anisotropic nature [124–127, 133]. The other
group consists of studies that do not make this assumption
[89, 92, 94] but work, instead, with a model with anisotropic
exchange between pseudospin-1/2 degrees of freedom as in
equation (14). Ultimately, from the discussion above regarding
the need to transform observables, one concludes that if the
crystal field gap 	 is not very large compared to the �ij

interactions in Hint, the theory and the ultimate description of
experimental data are not on on a very strong footing anyway
from the word go. This is particularly the case for Tb2Ti2O7

[84, 85]. At the other extreme, for example in Yb2Ti2O7, the
gap 	 ∼ 600 K [81] is so large that one can employ either
a pseudospin-1/2 representation [82, 89, 94], or a model with
bilinear couplings between the Ji [127, 133]. In that case
the anisotropic bilinear exchange couplings, �ij , between Ji

and Jj are almost an exact inverse linear transformation of
the couplings between the Si pseudospins [133]. The same
argument probably applies to Er2Ti2O7 where a spin-1/2 model
[92, 93] and one with Ji–Jj couplings [125, 134] can be used
for zero field or for magnetic fields less than a few tesla, though
we note that this material is no QSI candidate. In the case of
Yb2Ti2O7, a recent paper [91] has discussed the pitfalls of

some of the analysis and models employed in a number of
works [124–126, 133].

Staying with systems that can be described by an
effective spin-1/2 model as in equation (14), two neutron
scattering methods have been used to determine the {Je} ≡
(J‖, J±, J±±, Jz±) couplings. One method is to fit the
energy-integrated paramagnetic scattering, S(q), obtained
at sufficiently high temperature, and compare it with
the corresponding S(q) obtained via mean-field theory
[94, 143, 144]. If wanting to neglect the long-range dipolar
interactions, one can also fit the experimental S(q) at
sufficiently high temperature with that calculated on the basis
of an approximation using finite clusters [145]. Such an
approach could be formally rationalized on the basis of the
so-called numerical linked cluster method (NLC) [90, 91].
It is probably fair to say that such mean-field approaches
have not yet successfully yielded accurate values for the {Je}
couplings for any of the R2Ti2O7 materials considered. The
main technical difficulty is that one is required to perform
experiments in a temperature regime which is at least five to
ten times higher than the mean-field transition temperature
(T mf

c ) of the underlying spin-1/2 Hamiltonian in order for
these methods to be quantitative. At such high relative
temperatures (typically T∼20K), the intensity modulation of
the experimental S(q) can be quite weak and difficult to
fit. Previous works on Yb2Ti2O7 [94, 133] have considered
temperature that are actually below T mf

c [89] and the reported
values of {Je} couplings are, consequentially, quite inaccurate
[90, 91]. A work on Er2Ti2O7 that compares the experimental
S(q), obtained at a temperature reasonably high compared
to the true critical temperature, with that obtained from
calculations on a single tetrahedron, may be less subject to
this concern [145].

The other method that is currently enjoying some
popularity employs inelastic neutron scattering to probe
the excitations in the field-polarized paramagnetic state
[89, 92]. By fitting the dispersion and intensity of these
excitations compared to those calculated from the model (14),
supplemented by a magnetic Zeeman field term, one can obtain
the four couplings {Je}. This approach has been applied to
determine (fit) the {Je} for both Yb2Ti2O7 [89] and Er2Ti2O7

[92]. In these fits, the magnetostatic dipole–dipole interactions
have only been considered at the nearest-neighbour level, and
their nonzero values are thus implicitly folded into the fitted
{Je} values. There is nothing in principle that would prevent
performing an analysis of these in-field excitations that would
include the true long-range dipolar interactions [146, 147] and
thus determine the ‘real’ {Je} nearest-neighbour values. In
view of the fact that the current Heff model in equation (14)
neglects effective exchange couplings between the pseudospin-
1/2 beyond nearest-neighbours, which have been found in
the classical dipolar spin ice Dy2Ti2O7 to be about 10% of
the nearest-neighbour J‖ [26], it is indeed perhaps justifiable,
at least for the time being, to ignore dipolar interactions
beyond nearest-neighbours altogether. In that context, it is
interesting to note that recent calculations that make use of a
sort of series expansion method based on the NLC expansion,
have shown that the specific heat [90] and the magnetic field
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and temperature dependence of the magnetization [91] of
Yb2Ti2O7 is well described using the {Je} determined by the
aforementioned fit to inelastic neutron scattering data that
ignore the dipolar interactions beyond nearest-neighbours [89].
A similar conclusion has been reached for Er2Ti2O7 on the
basis of a high-temperature series expansion [93].

4.2. Candidate materials

In this section we briefly discuss four materials among the
R2Ti2O7 family that may be candidates for displaying some
of the QSI phenomenology. These are Tb2Ti2O7, Pr2M2O7

(M = Sn, Zr) and Yb2Ti2O7. While these compounds display
a number of attributes that warrant discussing their exotic
thermodynamic properties in the context of QSI physics, it
is fair to say that, at the time of writing, there is no definitive
evidence that any one of them displays a U (1) quantum spin
liquid inherited from QSI physics.

4.2.1. Tb2Ti2O7. This was the first material for which
the name quantum spin ice was coined [84]. Upon
cooling, Tb2Ti2O7 starts to develop magnetic correlations at a
temperature of 20 K or so, but most experimental studies have
so far failed to observe long-range (dipolar spin) order down to
the lowest temperature [148, 149]. Some early reports found
signs for slow dynamics below ∼300 mK [149], suggesting
a kind of spin-freezing/spin-glassy phenomena [150]. With
overall AF interactions, indicated by a negative Curie–Weiss
temperature θCW, one would naively expect this non-Kramers
Ising system to display a non-frustrated long-range ordered
ground state with all ‘up’ tetrahedra in figure 1 having their
four spins pointing ‘in’ and all ‘down’ tetrahedra having
spins pointing ‘out’, or vice versa [14, 15]. By considering
an Ising dipolar spin ice model with competing nearest-
neighbour AF (J‖ < 0 in equation (3)) and long-range dipolar
interactions, [23] found a critical temperature around 1 K, in
total disagreement with experiments [148]. Further evidence
that such an Ising model was too simple for Tb2Ti2O7 came
from neutron scattering experiments [151]. These found a
broad region in reciprocal space near the point q = 002
with high scattering intensity [149, 151], which is inconsistent
with what is naively expected for an Ising model [143].
Subsequent theoretical work [144, 143] found that allowing
for the magnetic moments to fluctuate transverse to their local
[1 1 1] Ising direction could lead to a high scattering intensity
at q = 002. These early observations, along with the fact that
such broad q = 002 intensity remains down to a temperature
of 50 mK [149], made it clear that one or more mechanisms
had to be considered to generate non-Ising fluctuations and
response down to the lowest temperature.

The classical spin ice compounds Ho2Ti2O7 and
Dy2Ti2O7 have a large gap 	 of order of 300 K between
their crystal field ground state doublet and their first excited
doublet. As discussed in section 4.1, this feature is at the
origin of an Ising description of these systems [5]. In contrast,
Tb2Ti2O7 has 	 ∼ 18 K [152]. Calculations of the dynamical
structure factorS(q, ω) in the paramagnetic phase that employs
the random phase approximation (RPA) method [144] make

a strong point that this small gap 	 allows for a significant
admixing between the crystal field states that is induced
by the interactions among the Ji angular momenta through
superexchange and long-range dipolar interaction. These
effects are rendered even more significant since it appears
that, at the level of an Ising model description that ignores
excited crystal field states [23], Tb2Ti2O7 is near a boundary
between an ‘all-in/all-out’ long range ordered phase and a ‘2-
in’/‘2-out’ spin ice state [23]. In other words, since projected
interactions Hint in the crystal field ground state put the material
near a phase boundary between distinct classical ground states,
corrections beyond this projection that involve the details of
the �ij O(Ji ) O(Jj ) interactions, and the excited crystal field
states must be revisited and incorporated into the effective low-
energy Hamiltonian.

Considering a simple model of nearest-neighbour
isotropic exchange Ji · Jj between the Ji angular momenta
as well as long-range dipole–dipole interactions, [84, 85]
found, via second order perturbation theory calculations,
that the original dipolar Ising spin ice model description of
Tb2Ti2O7 is significantly modified. Rather, an early form
of an effective low-energy pseudospin-1/2 model similar to
that of equation (14), supplemented by further anisotropic
exchange terms as well as long-range dipolar interactions, was
obtained [85]. One may thus consider that Tb2Ti2O7 is one
system for which a QSI Hamiltonian of the form such as in
equation (14) is well motivated. The lack of long-range order
in Tb2Ti2O7 is thus, perhaps, intriguingly related to the U(1)

spin liquid of equation (14) [84].
Over the past couple of years, however, the situation

regarding the behaviour of Tb2Ti2O7 below a temperature
of 2 K has been shown to be very complex indeed. The
old evidence [153] for a sizeable magneto-elastic response
in this system has resurfaced [126, 154, 155, 156]. Some
authors have proposed that, possibly related to this lattice
effect, the crystal field ground state of Tb3+ is split into two
singlets separated by an energy gap of order of 2 K, and
that this is the principal reason why this system does not
order [157, 158]. Interestingly, the closely related Tb2Sn2O7

compound develops long-range order at 0.87 K into a q = 0
long-range ordered version of a ‘2-in’/‘2-out’ spin ice state, but
with the magnetic moments canted away from the strict 〈1 1 1〉
Ising directions [159]. Tb2Sn2O7 has also been proposed to
have such a split crystal field ground doublet [160]. But,
with the suggestion that it has stronger interactions than
its Tb2Ti2O7 cousin, Tb2Sn2O7 is argued to overcome the
formation of a trivial non-magnetic singlet ground state and
to develop long-range order. The suggestion that there exists
an inhibiting doublet-splitting mechanism leading to a singlet-
singlet gap as large as 2 K in Tb2Ti2O7 has been debated [161].
At the same time, the existence of a magnetization plateau for
a magnetic field along [1 1 1] predicted for a QSI state [162]
based on a minimal model of isotropic exchange between the J

angular momenta and dipolar interactions [85] is also a matter
of experimental contention [163–167].

Some recent neutron scattering work on Tb2Ti2O7

finds evidence for pinch-points suggesting the presence of
‘2-in’/‘2-out’ spin ice-like correlations (see discussion in
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section 2.1) [168]. Even more recent inelastic neutron
scattering studies have identified some clear and reasonably
intense features at the q = 1

2
1
2

1
2 reciprocal space point lattice

points suggesting the development of nontrivial magnetic
correlations at the lowest temperature and which have been
referred to as ‘AF spin ice correlations’ [157, 158, 169–171].
This, along with the observation of nonzero quasi-elastic
magnetic scattering below an energy of 0.05 meV ∼0.5 K, may
be viewed as inconsistent [162] with the above non-magnetic
singlet ground state scenario [157, 158]. Finally, it has
become clear over the past two years that there are significant
sample-to-sample variations in the thermodynamic properties
exhibited among single crystals of Tb2Ti2O7 [171, 172]. This
may ultimately be the cherry on the cake in terms of the
plethora of phenomena Tb2Ti2O7 displays. The sample-
to-sample variability may be endorsing a picture that this
compound is naturally located near the vicinity of a transition
between two (or more) competing states. There is probably
sufficient evidence in place suggesting that there are spin-
ice like correlations and transverse fluctuations of the angular
momenta in Tb2Ti2O7 so that a (partial) QSI picture is not, at
this time, ruled out. However, there is definitely more to the
story and there are numerous hints that the lattice degrees of
freedom are not inert bystanders in Tb2Ti2O7 [156, 170], and
that magneto-elastic couplings should probably be considered
carefully. In that context, the possibility of magneto-elastic
interactions and the concurrent existence of symmetry related
quadrupolar-like interactions naturally brings up the question:
‘what is the role of quadrupolar-like interactions in even
electron (non-Kramers) magnetic ion systems in modifying the
simplest (Ising magnet) description of these systems?’ This
question has been explored with the QSI candidates, Pr2M2O7

(M = Sn, Zr), that we next discuss.

4.2.2. Pr2Sn2O7 and Pr2Zr2O7. It might be said that
the modern research era in frustrated quantum spin systems
was, at least partially, triggered by Anderson’s 1987 Science
paper [1]. In this paper, Anderson noted that geometrical
frustration might naturally lead to exotic quantum states of
magnetic matter, including resonating valence bond (RVB)
states from which unconventional superconductivity may arise.
Unfortunately, if the field of condensed matter physics has
long been experiencing a drought in the number of (quantum)
spin liquid candidate materials [173], the scarcity of highly
frustrated magnetic materials that are at the verge of a
Mott-insulator transition, or display simultaneously frustrated
localized magnetic moments along with itinerant electrons,
may remind one of the Martian atmosphere. From that
perspective, frustration and development of superconductivity
in organic Mott insulators is more than a curiosity [174]. In
that context, it is perhaps not surprising that the discovery of
spin-ice like ‘2-in’/‘2-out’ correlations, signalling geometrical
frustration for would-be isolated non-Kramers Pr3+ ions, in
the metallic Pr2Ir2O7 pyrochlore compound [175, 176] has
attracted a fair amount of interest [177–179]. Before attacking
the complexities of Pr2Ir2O7, such as the resistivity minimum
as a function of temperature (Kondo-like effect) [175] and
anomalous Hall effect [176], one may wonder whether, even

in insulating Pr-based compounds, there might exist unusual
properties that may be of relevance to the physics of metallic
Pr2Ir2O7.

The pyrochlore form of Pr2Ti2O7 does not exist [130] at
ambient temperature and pressure. However, the insulating
and magnetic Pr2Sn2O7 and Pr2Zr2O7 compounds do exist
and both form a regular pyrochlore structure. In these two
materials, the Pr3+ non-Kramers ions possess a magnetic
crystal field Ising doublet ground state, as the Ho2Ti2O7

spin ice and the above paradoxical Tb2Ti2O7. Pr2Sn2O7 is,
unfortunately, not amenable to single-crystal growth using
modern image furnace methods, but Pr2Zr2O7 has been grown
successfully [88, 180]. Interestingly, neither material appears
to develop long-range order down to temperatures of the
order of 50 mK [87, 88]. Ac susceptibility measurements find
spin freezing in Pr2Sn2O7 below a temperature of order of
100–200 mK [181]. Powder neutron diffraction on Pr2Sn2O7

reveals short-range correlations and, surprisingly, it has a
residual low-temperature entropy larger than the Pauling
entropy S0 found in classical spin ices [87]. Inelastic neutron
scattering suggests that the low-temperature state of this system
remains dynamic down to at least 200 mK [87].

Early work on Pr2Zr2O7 [180] found a negative
Curie–Weiss temperature of −0.55 K (determined below a
temperature of 10 K), indicating effective AF interactions
between the magnetic moments. Ac magnetic susceptibility
measurements did not find evidence for a transition to long-
range order down to 80 mK. However, some frequency
dependence of the ac susceptibility was observed below 0.3 K,
indicating some form of spin freezing. More recent work on
single crystals of Pr2Zr2O7 report evidence of spin ice-like
correlations and quantum fluctuations [88]. Heat capacity and
magnetic susceptibility measurements show no sign of long-
range order down to 50 mK. The wave vector dependence
of quasi-elastic neutron scattering at 100 mK shares some
similarities with a classical Ising spin ice, including pinch
points. These results are interpreted as an indication of the
‘2-in’/‘2-out’ ice rule being satisfied over a time scale set by
the instrumental energy resolution. Quite interesting, and in
sharp contrast with classical spin ices where almost no inelastic
response is observed [182], inelastic scattering in Pr2Zr2O7

with an energy transfer of 0.25 meV does not show pinch
points. This suggests that there are fluctuations operating that
break the ice rule.

In summary, it appears that the insulating Pr2(Sn,Zr)2O7

compounds develop significant correlations at temperatures
below approximately 1 K, but do not develop true long-range
order nor do they appear to behave like the conventional
Ho2Ti2O7 and Dy2Ti2O7 classical dipolar spin ices. As in
these latter systems, the lowest excited crystal field levels in
Pr2(Sn,Zr)2O7 are at high energy, with a gap 	 ∼ O(102) K
above the ground doublet [87]. Consequently, the virtual
crystal field fluctuation mechanism induced by the interactions
between the magnetic moments, and proposed to be at play
in Tb2Ti2O7 because of its small gap 	 ∼ 18 K [84, 85], is
likely not significant in these two Pr-based compounds. It has
been suggested that the microscopic Hint interactions in these
Pr-based compounds contain strong multipolar interactions
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between the Ji angular momenta operators [83, 183] and
that these introduce quantum fluctuations that ‘melt’ the low
temperature classical spin ice state that would have developed
in their absence. The idea, although not quite presented in
this form in [83, 183], is that high multipolar interactions
between the Ji operators, which involve higher powers of Ji

than simpler bilinear exchange-like couplings �uv
ij J u

i J v
j , where

u, v are Cartesian components, have large matrix elements
between the two states forming the crystal field doublet ground
state of Pr3+ in Pr2(Sn,Zr)2O7. At the end of the day, the
projection of the derived complex microscopic inter-ionic
Pr–Pr interactions onto the crystal field ground doublet leads to
transition matrix elements between the two states, |ψ±〉, that
make up the doublet, these bringing about quantum dynamics
between |ψ+〉 and |ψ−〉. We note in passing that in a recent
paper [184] investigating the crystal field levels of Pr2Sn2O7, it
was found that the usage of pure L·S coupling assuming a fixed
J = 4 manifold, hence neglecting J -mixing effects, leads to an
underestimate of the quadrupole matrix elements between |ψ+〉
and |ψ−〉. The authors of [184] conclude that consideration
of J -mixing effects is important to quantitatively estimate the
amount of quadrupolar-induced quantum fluctuation effects
in Pr2Sn2O7. An effective pseudospin-1/2 Hamiltonian,
which describes that physics, can then be constructed and
found to be of the form of Heff, 1

2
, but with Jz± = 0 since

degenerate states of non-Kramers ions have vanishing matrix
elements of time-odd operators such as J . We thus reach the
interesting conclusion that Pr-based QSI candidates are rather
attractive from the perspective of systematic experimental and
theoretical investigations: (i) the effect of the excited crystal
field states can probably be safely ignored, (ii) the magnetic
moment µ ∼ 3µB means that dipolar interactions are ten times
weaker than in the 10µB Ho2Ti2O7 and Dy2Ti2O7 classical
spin ice materials [23, 24] and can be neglected as a first
approximation down to about 0.1 K. and, being non-Kramers
ions, their effective pseudospin-1/2 Hamiltonian consists of
only three couplings (J‖, J±, J±±), making the theoretical
description of these materials reasonably straightforward, at
least in terms of the number of free parameters.

The systematic theoretical [52, 53, 83, 183] and experi-
mental exploration of QSI physics in Pr-based materials has
now begun in earnest [87, 88] and one may expect exciting
results to emerge from future studies. That said, given the dif-
ficulty involved in synthesizing clean Sn-based and Zr-based
pyrochlore oxides [130], one could, or perhaps even will,
always worry about the effect that weak/dilute non-symmetry-
invariant perturbations may have on the Pr-based materials
given that the magnetic crystal field ground state is not pro-
tected by the Kramers theorem. The above discussion about
Tb2Ti2O7 and Pr2(Sn, Zr)2O7 allows us to rationalize the nat-
uralness of the next class of materials candidates for the study
of QSI phenomenology. We desire materials with large energy
gaps 	 between their crystal field ground state and their first
excited energy level. Ideally, they should have small magnetic
dipole moments (say less than 3µB) so that dipolar interac-
tions may be neglected, at least initially. Were it not for the
concern of disorder breaking their crystal field degeneracy,
non-Kramers ions would seem appealing candidates because

the single ion dipolar doublets are Ising-like. The crystal field
doublets of Kramers ions are stable against small local crys-
tal field deformations that may be caused by imperfect sample
quality but the low-energy anisotropy is not constrained to be
Ising-like and, indeed, rare-earth Kramers ions are known that
span the range from Ising to Heisenberg to XY spins. While
the extent of the available parameter space might disfavour
Kramers magnets as potential QSI candidates, it certainly does
not rule them out and, in fact, Yb2Ti2O7, which we discuss
next, is currently attracting much interest in this respect.

4.2.3. Yb2Ti2O7. Going back to some of the very earliest
experimental studies of magnetic pyrochlore oxides, Blöte
et al observed in Yb2Ti2O7 a broad specific heat bump at
a temperature of about 2 K, followed at lower temperature
by a sharp specific heat peak at a critical temperature
of Tc ∼ 0.214 K suggesting a transition to long-range
order [185]. It was not until the late 1990s and early
2000s that this compound was reinvestigated [24, 186], with
the previously observed [185] sharp specific heat transition
confirmed. The work of [186] reported data from 170Yb
Mössbauer spectroscopy and muon spin relaxation (muSR)
measurements revealing a rapid collapse of the spin fluctuation
rate just above Tc. However, powder neutron diffraction
did not find signs of long-range magnetic order below
Tc and muSR found a temperature-independent muon spin
depolarization rate below Tc, which was interpreted as a
quantum fluctuation regime. The work of [186] provided
strong evidence that the Yb3+ ion in Yb2Ti2O7 should be
viewed as an XY system (i.e. with g tensor components
g⊥ > g‖), meaning that the magnetic moments have their
largest magnetic response perpendicular to the local [1 1 1]
direction. A subsequent single-crystal neutron scattering study
reported evidence for ferrimagnetic order [187], but this was
soon contested by neutron depolarization measurements [188].
In [133, 189, 190], neutron scattering measurements revealed
the development of rods of scattering intensity along the 〈1 1 1〉
directions, which was interpreted in [190] as the presence
of quasi-2D spin correlations, an interesting and unusual
phenomenon, assuming this interpretation to be correct, for
a 3D cubic system. These rods of scattering were found to be
present at a temperature as high as 1.4 K [133]. The application
of a magnetic field as low as 0.5 T along the [1 1 0] direction
was found to induce a polarized 3D order accompanied by
spin waves [190]. Polarized neutron scattering measurements
found, through an analysis of the neutron spin-flip ratio
[124, 125], a non-monotonic temperature evolution of the
component of the local spin susceptibility, χloc, parallel to
the local [111] direction. Such behaviour is surprising for
an XY system with g⊥ > g‖, and the behaviour observed
for χloc provided compelling evidence for strongly anisotropic
effective exchanges at play in Yb2Ti2O7, with a very strong
effective Ising exchange J‖ term as in equation (14).

As discussed in section 4.1, several works
[89, 94, 124–126, 133] have endeavoured to determine the
strength of the interactions in Yb2Ti2O7. It appears that the ef-
fective coupling between pseudospins 1/2 are in fact strongly
anisotropic, with the largest one being indeed J‖. Among all
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values having been reported, the exchange parameters deter-
mined in [89] describe the bulk thermodynamic properties of
the material reasonably well, at least down to 0.7 K [90, 91].
Quite recently, the previously debated [188] report of long-
range ferrimagnetic order [187] in Yb2Ti2O7 has been recon-
firmed [94]. In this ferrimagnetic state, the magnetic moments
are found to be predominantly aligned along one of the six
〈1 0 0〉 cubic directions, but slightly splayed away from com-
plete alignment, hence the label ferrimagnetic state. In this
context, it is worth mentioning a very recent paper on the
closely related Yb2Sn2O7 material [191]. In this latter work,
specific heat, 170Yb Mössbauer spectroscopy, neutron diffrac-
tion and muSR measurements on powder samples find a first
order transition at 0.15 K to a state that Mössbauer and neu-
tron diffraction suggest to be the above ferrimagnetic order,
referred to as long-range ‘splayed FM’ order. The situation
about the nature of the low-temperature state of Yb2Ti2O7

is thus rather confusing. It may be potentially illuminating
to know that there is significant sample-to-sample variability
among single-crystal samples as inferred from the sharpness
of the Tc ∼ 0.2 K specific heat peak [96, 192–194]. A recent
extensive structural study investigation [194] has identified at
least one origin of these variations: single crystals grown via
the floating zone technique show, compared to sintered powder
samples, that up to 2.3% of the non-magnetic Ti4+ sites get re-
placed by magnetic by Yb3+. Such ‘stuffing’ of the transition
metal ion site Yb3+ ions would introduce random exchange
bonds and local lattice deformations and these may be at the
origin of the mechanism affecting the stability of the mag-
netic ground state of a would-be structurally perfect Yb2Ti2O7

material. Finally, we note that new and very recent muSR
results find no evidence for the development of static order
in either powder or single-crystal samples of Yb2Ti2O7 and,
unlike in [186], find no rapid collapse of the Yb3+ spin fluc-
tuation rate upon approaching the transition at ∼0.2 K from
above [96].

The overall situation with Yb2Ti2O7 is thus as follows.
The effective exchange interactions are strongly anisotropic.
On the basis of the determined [89] and reasonably well
validated [90, 91] exchange couplings, simple mean-field
theory [89], classical ground state energy minimization [195]
and more sophisticated gMFT calculations [51, 53] all predict
conventional long-range ferrimagnetic order with the spins
slightly splayed away from the six cubic 〈1 1 1〉 directions,
as recently reported for Yb2Sn2O7 [191] and characterized by
negligible quantum fluctuations [89]. On the basis of these
same calculations, Yb2Ti2O7 is predicted to be located deeply
in this semi-classical splayed FM state, away from any phase
transition boundaries with other conventional classical long-
range ordered phases [195], or with the U(1) quantum spin
liquid phase or yet with the unconventional quantum CFM
phase that [51, 53] predict. It therefore seems likely that neither
Yb2Ti2O7 nor Yb2Sn2O7 [191] are good realizations of the
sought U(1) liquid in a QSI setting. That said, with a tendency
towards a broken discrete symmetry state (i.e. ferrimagnetic
order along one of 〈1 0 0〉 directions) characterized by gapped
excitations throughout the Brillouin zone, it is rather unclear
why Yb2Ti2O7 should be so sensitive to dilute disorder such

as that generated by Yb3+ stuffing on Ti4+ sites [194]. One
might then expect that if the observed amount of disorder
and strength was greater than some critical value, that the
resulting random frustration would then first drive the system
into a semi-classical spin glass state. We are not aware of
experimental studies having reported results suggesting a spin
glass state in Yb2Ti2O7 below a temperature of order of 0.2 K.

Let us end by stating that further experimental studies
of Yb-based pyrochlores to search for either the U(1) liquid
or the CFM phase are certainly most warranted. Perhaps
variants such as Yb2Ge2O7, Yb2Zr2O7 or Yb2Hf2O7 could
display interesting properties. As discussed in section 3, we
would expect a material finding itself in the U(1) quantum
spin liquid state to be robust for a finite variation in the
microscopic interaction parameters. In this context, it may
be worth noting that the disordered Yb2GaSbO7 material does
not display a sharp specific heat peak near 0.2 K with its
uniform susceptibility below 10 K characterized by an AF
Curie–Weiss temperature, θCW ∼ −2.3 K, unlike Yb2Ti2O7

for which θCW is ferromagnetic-like with θCW ∼ +0.4 K [185].
Notwithstanding the random spin–spin couplings caused by
the GaSb randomness on the transition metal ion site, a
new generation of experiments (e.g. ac and dc susceptibility,
neutron, Mössbauer, muSR measurements) on Yb2GaSbO7

may prove interesting.
We conclude by saying that the three materials discussed

in this section, Tb2Ti2O7, Pr2(Sn, Zr)2O7 and Yb2Ti2O7, are
all described to some extent by the type of effective spin-
1/2 Hamiltonian of equation (14) from which one obtains an
exotic gapless U(1) spin liquid state with gapped electric and
magnetic excitations, in addition to gapless photons. However,
none of them have (yet) been found to be a clear realization
of such a state. The wide variety of materials in the family of
R2M2O7 pyrochlore oxides [130] offers the possibility that one
or more of these compounds may eventually prove compelling
candidates to support the exotic physics of the U(1) spin
liquid. In such a case, the experimental and theoretical lessons
learned while investigating (Tb, Pr, Yb)2(Ti, Zr, Sn)2O7 will
undoubtedly prove useful.

It would also perhaps be interesting to investigate in more
detail the AR2S4 and AR2Se4 (A = Cd, Mg) chalcogenide
spinels in which the R3+ rare-earth ion sits on a pyrochlore
lattice [22, 196]. In the context of spin ice-like systems,
CdDy2Se4 likely has XY-like Dy3+ ions and could be
particularly interesting [195] if Jzz in equation (14) proved
to be the strongest coupling, as found in the XY Yb2Ti2O7

compound [89].

5. Conclusion

In the foregoing sections, we have given an account of
a theoretical proposal that effective spin-1/2 pyrochlore
magnets, close to the Ising limit, may have a spin liquid ground
state with gapless photon-like excitations—the so-called
quantum spin ice state. On a purely theoretical front, there is
strong evidence both from effective field theory and numerics
that quantum fluctuations acting on the set of spin ice states
can lead to just such a quantum spin liquid ground state. We
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can, moreover, make strong statements about the experimental
observables in quantum spin ice. For example, unlike the case
with many spin liquids, the gapless photon-like excitations
carry spin one and couple directly to neutrons and would
therefore be resolved as a sharp band of scattering intensity
revealing the linear dispersion of the emergent photon.

Quantum spin ice exhibits a hierarchy of energy scales.
The crossover between the quantum spin ice state and classical
spin ice is controlled by the magnitude of the hexagonal ring
exchange. At higher scales, there is a gap to the creation of spin
ice defects—the magnetic monopoles of [31]. The schematic
recipe for making a quantum spin ice is that the material
exchange should be dominated by an Ising coupling either
coming purely from the balance of exchange parameters or
assisted by the presence of an Ising-like single-ion anisotropy.
There should be weaker transverse exchange couplings which
generate the effective ring exchange. For realistic values of
the couplings in real materials, the hexagonal ring exchange
can vary over many orders of magnitude but, inevitably, in
rare-earth magnets it may be of the same order of magnitude
as J‖ down to 100 times smaller. Upon approaching the latter
limit, it is then important to consider the effect of competing
couplings on the quantum spin ice state. The success of the
experimental search for quantum spin ice is contingent on
whether the spin liquid is natural in the space of available
couplings within an effective spin-1/2 model: which consists
of four linearly independent nearest neighbour exchange,
the long-range dipole coupling, further neighbour exchange,
higher order ring exchange and, potentially, couplings to non-
magnetic degrees of freedom.

On the theoretical side, recent work has mapped out
the phase diagram in the presence of the symmetry-allowed
nearest-neighbour exchange couplings using a type of gauge
mean-field theory that allows one to study directly the
fractionalized gauge theory degrees of freedom as well as
conventional magnetically ordered phases [51, 53]. From
an experimental point of view, the finding from this study
is encouraging: the quantum spin liquid ground state lives
in a significant region in the space of anisotropic spin–
spin parameters. It would be interesting to look at the
situation beyond mean-field theory and to consider further the
phenomenology of quantum spin ice as it crosses over into
classical spin ice. One issue is how one might probe directly
the gapped excitations in the quantum spin ice state and their
classical analogues at higher temperature.

On the experimental side, we have discussed in some
detail four materials among the rare-earth pyrochlores which
meet the simple criteria of having Ising anisotropy with
weaker transverse fluctuations of different microscopic origin.
Unfortunately, while all four materials are associated with
potentially very interesting open questions relating to the effect
of disorder (Yb2Ti2O7 and Tb2Ti2O7) and the precise nature of
the low-temperature state (Tb2Ti2O7, Yb2Ti2O7 and the Pr3+

based materials), none appears to exhibit cleanly the quantum
spin ice phase that is the main topic of this review. The
existence of these materials does, however, demonstrate the
naturalness of magnets in the vicinity of classical spin ice with
added quantum fluctuations described, at least partially, by a

model such as equation (14). In addition, the last few years
have seen considerable theoretical progress in developing a
quantitative understanding of this class of materials. Given
that many magnets among the pyrochlore rare-earths remain
to be investigated—a number have been mentioned in the
preceding pages—and given our, now, reasonable mature
understanding of the broad series of pyrochlore magnets, the
next few years should see similar rapid progress in mapping
out the experimental parameter space for these materials.
Optimistically, within a few years, we will understand that
the materials discussed in this review are skirting around the
edge of a real and significant region exhibiting spin liquid
ground states and we will also have discovered examples of
real pyrochlore materials that do live in that region and are the
gapless spin liquids advertised in the title of this review.
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[95] Dalmas de Réotier P et al 2012 Phys. Rev. B 86 104424
[96] D’Ortenzio R M et al 2013 Phys. Rev. B 88 134428 and

references therein
[97] Baskaran G and Anderson P W 1988 Phys. Rev. B 37 580
[98] Affleck I and Marston J B 1988 Phys. Rev. B 37 3774
[99] Chakravarty S et al 2002 Phys. Rev. B 66 224505
[100] Shannon N, Misguich G and Penc K 2004 Phys. Rev. B

69 220403(R)
[101] Syljuasen O F and Chakravarty S 2006 Phys. Rev. Lett.

96 147004
[102] Chern C-H and Nagaosa N 2013 arXiv:1301:4744
[103] Wen X-G 2002 Phys. Rev. Lett. 88 011602
[104] Wen X-G 2002 Phys. Rev. B 65 165113
[105] Hermele M et al 2004 Phys. Rev. B 70 214437
[106] Nogueira F S and Kleinert H 2005 Phys. Rev. Lett. 95 176406
[107] Lee S-S 2008 Phys. Rev. B 78 085129
[108] Bergman D L, Fiete G A and Balents L 2006 Phys. Rev. B

73 134402
[109] Sikora O 2009 Phys. Rev. Lett. 103 247001
[110] Sikora O 2011 Phys. Rev. B 84 115129
[111] Lee S-S and Lee P A 2005 Phys. Rev. B 72 235104
[112] Lee S-S and Lee P A 2006 Phys. Rev. B 74 115101
[113] Lee S-S and Lee P A 2006 Phys. Rev. B 74 035107
[114] Motrunich O I and Senthil T 2002 Phys. Rev. Lett. 89 277004
[115] Motrunich O I and Senthil T 2005 Phys. Rev. B 71 125102
[116] Tewari S, Scarola V W, Senthil T and Das Sarma S 2006

Phys. Rev. Lett. 97 200401
[117] Levin M and Wen X-G 2006 Phys. Rev. B 73 035122
[118] Levin M and Wen X-G 2005 Phys. Rev. B 71 045110
[119] Kitaev A Y 2003 Ann. Phys. 303 2
[120] Hermele M, Senthil T and Fisher M P A 2005 Phys. Rev. B

72 104404
[121] Alicea J 2008 Phys. Rev. B 78 035126
[122] Powell S 2011 Phys. Rev. B 84 094437
[123] Henry L-P and Roscilde T 2013 arXiv:1307.7032
[124] Cao H B et al 2009 Phys. Rev. Lett. 103 056402
[125] Cao H B et al 2009 J. Phys.: Condens. Matter 21 492202
[126] Malkin B Z et al 2010 J. Phys.: Condens. Matter 22 276003
[127] Thompson J D et al 2011 J. Phys. Condens. Matter 23 164219

25

http://dx.doi.org/10.1103/PhysRevLett.84.3430
http://dx.doi.org/10.1103/PhysRevLett.83.1854
http://dx.doi.org/10.1103/PhysRevLett.95.097202
http://dx.doi.org/10.1103/PhysRevLett.101.037204
http://dx.doi.org/10.1139/p01-099
http://dx.doi.org/10.1103/PhysRevLett.87.067203
http://dx.doi.org/10.1088/0953-8984/16/43/R02
http://dx.doi.org/10.1103/PhysRevLett.95.217201
http://dx.doi.org/10.1038/nature06433
http://dx.doi.org/10.1146/annurev-conmatphys-020911-125058
http://dx.doi.org/10.1103/PhysRevB.71.014424 
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104138
http://dx.doi.org/10.1126/science.1177582
http://dx.doi.org/10.1038/nphys1227
http://dx.doi.org/10.1088/0953-8984/23/16/164222
http://dx.doi.org/10.1038/nmat3729
http://dx.doi.org/10.1038/nature08500
http://dx.doi.org/10.1038/nphys1896
http://dx.doi.org/10.1103/PhysRevLett.107.207207 
http://dx.doi.org/10.1103/PhysRevLett.108.147601 
http://dx.doi.org/10.1103/PhysRevLett.108.217203
http://dx.doi.org/10.1038/nphys2466
http://dx.doi.org/10.1103/PhysRevLett.87.047205 
http://dx.doi.org/10.1103/PhysRevLett.110.107202 
http://dx.doi.org/10.1126/science.1178868
http://dx.doi.org/10.1143/JPSJ.78.103706
http://dx.doi.org/10.1103/PhysRevB.69.064404 
http://dx.doi.org/10.1103/PhysRevB.62.7850
http://dx.doi.org/10.1103/PhysRevLett.108.037202
http://dx.doi.org/10.1103/PhysRevB.86.104412
http://dx.doi.org/10.1103/PhysRevB.87.205130
http://dx.doi.org/10.1103/PhysRevB.68.184512 
http://dx.doi.org/10.1103/PhysRevLett.108.067204
http://dx.doi.org/10.1103/PhysRevB.86.075154 
http://dx.doi.org/10.1103/PhysRevLett.61.2376
http://dx.doi.org/10.1088/0953-8984/16/11/045
http://dx.doi.org/10.1088/1742-5468/2008/01/P01010
http://dx.doi.org/10.1103/PhysRevLett.96.097207
http://dx.doi.org/10.1103/PhysRevLett.97.139906
http://dx.doi.org/10.1103/PhysRevLett.100.047208
http://dx.doi.org/10.1103/PhysRevB.74.024302
http://dx.doi.org/10.1103/PhysRevB.72.144422
http://dx.doi.org/10.1016/0370-2693(75)90162-8
http://dx.doi.org/10.1016/0550-3213(77)90086-4
http://dx.doi.org/10.1016/0550-3213(77)90129-8
http://dx.doi.org/10.1103/PhysRevD.21.2291
http://dx.doi.org/10.1016/0003-4916(75)90211-0
http://dx.doi.org/10.1088/0954-3899/37/7A/075021 
http://dx.doi.org/10.1016/0370-2693(78)90737-2
http://dx.doi.org/10.1103/PhysRevA.20.2610
http://dx.doi.org/10.1016/0370-2693(80)90842-4
http://dx.doi.org/10.1103/PhysRevB.72.045141 
http://dx.doi.org/10.1103/PhysRevD.10.3376
http://dx.doi.org/10.1016/0370-2693(81)90038-1
http://dx.doi.org/10.1063/1.372565
http://dx.doi.org/10.1088/0953-8984/24/25/256003
http://dx.doi.org/10.1088/1742-6596/320/1/012065
http://dx.doi.org/10.1103/PhysRevB.83.094411 
http://dx.doi.org/10.1103/PhysRevLett.98.157204
http://arxiv.org/abs/0912.2957
http://arxiv.org/abs/1303.7240
http://dx.doi.org/10.1103/PhysRevLett.101.227204
http://dx.doi.org/10.1038/ncomms2914
http://dx.doi.org/10.1103/PhysRevX.1.021002
http://dx.doi.org/10.1103/PhysRevLett.109.097205 
http://dx.doi.org/10.1103/PhysRevB.87.184423
http://dx.doi.org/10.1103/PhysRevLett.109.167201
http://dx.doi.org/10.1103/PhysRevB.88.220404
http://dx.doi.org/10.1038/ncomms1989
http://dx.doi.org/10.1103/PhysRevB.86.104424
http://dx.doi.org/10.1103/PhysRevB.88.134428 
http://dx.doi.org/10.1103/PhysRevB.37.580
http://dx.doi.org/10.1103/PhysRevB.37.3774
http://dx.doi.org/10.1103/PhysRevB.66.224505
http://dx.doi.org/10.1103/PhysRevB.69.220403 
http://dx.doi.org/10.1103/PhysRevLett.96.147004
http://arxiv.org/abs/1301:4744
http://dx.doi.org/10.1103/PhysRevLett.88.011602
http://dx.doi.org/10.1103/PhysRevB.65.165113
http://dx.doi.org/10.1103/PhysRevB.70.214437 
http://dx.doi.org/10.1103/PhysRevLett.95.176406 
http://dx.doi.org/10.1103/PhysRevB.78.085129
http://dx.doi.org/10.1103/PhysRevB.73.134402
http://dx.doi.org/10.1103/PhysRevLett.103.247001
http://dx.doi.org/10.1103/PhysRevB.84.115129
http://dx.doi.org/10.1103/PhysRevB.72.235104 
http://dx.doi.org/10.1103/PhysRevB.74.115101
http://dx.doi.org/10.1103/PhysRevB.74.035107
http://dx.doi.org/10.1103/PhysRevLett.89.277004 
http://dx.doi.org/10.1103/PhysRevB.71.125102 
http://dx.doi.org/10.1103/PhysRevLett.97.200401
http://dx.doi.org/10.1103/PhysRevB.73.035122 
http://dx.doi.org/10.1103/PhysRevB.71.045110 
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1103/PhysRevB.72.104404
http://dx.doi.org/10.1103/PhysRevB.78.035126
http://dx.doi.org/10.1103/PhysRevB.84.094437 
http://arxiv.org/abs/1307.7032
http://dx.doi.org/10.1103/PhysRevLett.103.056402
http://dx.doi.org/10.1088/0953-8984/21/49/492202
http://dx.doi.org/10.1088/0953-8984/22/27/276003
http://dx.doi.org/10.1088/0953-8984/23/16/164219


Rep. Prog. Phys. 77 (2014) 056501 Review Article

[128] Yelon W B, Cox D E and Eibschutz 1975 Phys. Rev. B
12 5007

[129] Tomiyasu K 2011 Phys. Rev. B 84 054405
[130] Gardner J S et al 2010 Rev. Mod. Phys. 82 53
[131] Zinkin M P et al 1996 J. Phys.: Condens. Matter 8 193
[132] Santini P et al 2009 Rev. Mod. Phys. 81 807
[133] Thompson J D et al 2011 Phys. Rev. Lett. 106 187202
[134] McClarty et al 2009 J. Phys.: Conf. Ser. 145 012032
[135] Curnoe S H 2008 Phys. Rev. B 78 094418
[136] Canals B, Elhajal M and Lacroix C 2008 Phys. Rev. B

78 214431
[137] McClarty P A, Stasiak P and Gingras M J P 2014 Phys. Rev.

B 89 024425
[138] Javanparast B et al 2013 arXiv:1310.5146
[139] Huang Y-P et al 2013 arXiv:1311.1231
[140] Delannoy J-Y et al 2005 Phys. Rev. B 72 115114
[141] Delannoy J-Y et al 2009 Phys. Rev. B 79 235130
[142] Delannoy J-Y et al 2009 Phys. Rev. B 79 224414
[143] Enjalran M and Gingras M J P 2004 Phys. Rev. B

70 174426
[144] Kao Y-J et al 2003 Phys. Rev. B 68 172407
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